Interaction of Stigmasterol with Trypanosomal Uridylyl Transferase, Farnesyl Diphosphate Synthase and Sterol 14α-demethylase: An In Silico Prediction of Mechanism of Action

Author:

Ibrahim Mohammed Auwal1,Isah Murtala Bindawa2,Tajuddeen Nasir3,Hamza Saadatu Auwal3,Mohammed Aminu1

Affiliation:

1. Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria

2. Department of Biochemistry, Umaru Musa Yar'adua University, Katsina, Nigeria

3. Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria

Abstract

Background: Trypanosomiasis is one of the neglected tropical diseases and continues to cause serious morbidity, mortality and economic loss. Current anti-trypanosomal drugs are antiquated and suffer from a number of serious setbacks, thereby necessitating the search for new drugs. Stigmasterol has previously demonstrated in vitro and in vivo anti-trypanosomal activity. Methods: Herein, stigmasterol was docked into three validated anti-trypanosomal drug targets; uridylyl transferase, farnesyl diphosphate synthase and sterol 14α-demethylase, in order to elucidate the possible biochemical targets for the observed anti-trypanosomal activity. Results: The binding free energy between stigmasterol and the enzymes was in the order; sterol 14α-demethylase (-8.9 kcal/mol) < uridylyl transferase (-7.9 kcal/mol) < farnesyl diphosphate synthase (-5.7 kcal/mol). At the lowest energy docked pose, stigmasterol interacts with the active site of the three trypanosomal enzymes via non-covalent interactions (apart from hydrogen bond) while highly hydrophobic stigmasterol carbon atoms (21 and 27) were crucial in the interaction with varying residues of the three anti-trypanosomal targets. Conclusion: Therefore, results from this study might suggest that stigmasterol mediated the antitrypanosomal activity through interaction with the three anti-trypanosomal targets but with more preference towards sterol 14α-demethylase.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Reference20 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3