Development and Validation of a Robust QSAR Model for Benzothiazole Hydrazone Derivatives as Bcl-XL Inhibitors

Author:

Gupta Pawan1,Gutcaits Aleksandrs1

Affiliation:

1. CNS Active Compound Laboratory, Latvian Institute of Organic Synthesis, Riga, LV1006, Latvia

Abstract

Background: B-cell Lymphoma Extra Large (Bcl-XL) belongs to B-cell Lymphoma two (Bcl-2) family. Due to its over-expression and anti-apoptotic role in many cancers, it has been proven to be a more biologically relevant therapeutic target in anti-cancer therapy. In this study, a Quantitative Structure Activity Relationship (QSAR) modeling was performed to establish the link between structural properties and inhibitory potency of benzothiazole hydrazone derivatives against Bcl-XL. Methods: The 53 benzothiazole hydrazone derivatives have been used for model development using genetic algorithm and multiple linear regression methods. The data set is divided into training and test set using Kennard-Stone based algorithm. The best QSAR model has been selected with statistically significant r2 = 0.931, F-test =55.488 RMSE = 0.441 and Q2 0.900. Results: The model has been tested successfully for external validation (r2 pred = 0.752), as well as different criteria for acceptable model predictability. Furthermore, analysis of the applicability domain has been carried out to evaluate the prediction reliability of external set molecules. The developed QSAR model has revealed that nThiazoles, nROH, EEig13d, WA, BEHv6, HATS6m, RDF035u and IC4 descriptors are important physico-chemical properties for determining the inhibitory activity of these molecules. Conclusion: The developed QSAR model is stable for this chemical series, indicating that test set molecules represent the training dataset. The model is statistically reliable with good predictability. The obtained descriptors reflect important structural features required for activity against Bcl-XL. These properties are designated by topology, shape, size, geometry, substitution information of the molecules (nThiazoles and nROH) and electronic properties. In a nutshell, these characteristics can be successfully utilized for designing and screening of novel inhibitors.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3