In Silico and In Vitro Analysis of a Multiepitope L1-E7 Fusion Construct for Vaccine Development Against Human Papillomaviruses

Author:

Abbasifarid Elnaz1,Bolhassani Azam2,Irani Shiva1,Sotoodehnejadnematalahi Fattah1

Affiliation:

1. Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran

2. Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran

Abstract

Background: Human papillomavirus (HPV) infection is the major risk factor for cervical cancer. Current prophylactic HPV vaccines provide immunity against most genital and carcinogenic HPV types. However, these vaccines failed to produce immune responses against already established HPV infections. Methods: To design a therapeutic vaccine candidate, we utilized immunoinformatics tools to design a potential multiepitope fusion construct based on L1 and E7 genes from different high- and low-risk HPV types. After determination of CD4+ and CD8+ T cell epitopes, the allergenicity, toxicity, immunogenicity, conservancy, and population coverage were analyzed for epitopes selection. Then, hemolytic probability of the selected epitopes, and molecular docking between major histocompatibility complex (MHC) and the chosen epitopes were performed by different web servers. Next, a multiepitope peptide construct consisting of 12 epitopes linked by AAY proteasomal sequence was designed. After that, physicochemical properties, solubility, secondary and tertiary structures of this construct were evaluated by bioinformatics tools. Finally, after amino acid reverse translation of the multiepitope peptide construct, expression of the L1-E7 DNA construct (pEGFP-L1-E7) was investigated in HEK-293T cells using fluorescent microscopy, flow cytometry, and western blotting. Results: Considering various parameters, the immunodominant peptides such as L1(MHC-I)- DLDQFPLGRKFLLQ, L1(MHC-II)-NQLFVTVVDTTRSTN, E7-HPV16(MHC-I)-AEPDRAHYNI VTF, E7-HPV18(MHC-I)-HGPKATVQDIVLHL, E7-HPV31(MHC-I)-KPDTSNYNIVTF, E7-HPV33 (MHC-I)-RPDGQAQPATADYYI, E7-HPV45(MHC-I)- RTLQQLFLSFV, E7-HPV16(MHC -II)-TLH EYMLDLQPETTD, E7-HPV18(MHC-II)-LRAFQQLFLNTLSFV, E7-HPV31(MHC-II)-PTLQDYVL DLQPEAT, E7-HPV33(MHC-II)-LKEYVLDLYPEPTDL and E7-HPV45(MHC-II)-LQQLFLSTLSF VCPW were determined to design the vaccine construct. The results indicated efficient expression of the L1-E7 DNA construct (74 ± 2.19%) in vitro. Moreover, the polyepitope peptide generated in the cells was detected as a clear band of ~ 50 kDa in western blotting. Conclusion: Regarding the favorable transfection efficiency of the designed L1-E7 multi-epitope construct, in vivo validation study on its therapeutic potential is underway.

Funder

National Institutes for Medical Research Development

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3