Affiliation:
1. Department of Biomedical Engineering, Faculty of Technology, Selcuk University, Konya, Turkey
Abstract
Background:
The breast cancer takes the first place among women cancer diagnosed
worldwide.
Objective:
Based on the preferential multi-targeted approach on cancer therapy, we, in this study, aimed to design in silico
drug candidates possessing multi-targeted bioactivity to cope with multi-drug resistance using the known drug structures,
molecular modeling, and ADME parameters.
Materials and Methods:
We first evaluated the bioactivity score of the approved breast cancer drugs
across the top-three drug targets GPCR, kinase, and nuclear receptors and calculated their
physicochemical properties to see their drug-likeness profiles. Among 29 approved drugs, Aromasin
and Capecitabine showed the broadest bioactivity across the targets listed. By using molecular
modeling and bioisosteric modifications, and applying two filtering approaches, we investigated
thirty-one analogues of Aromasin and Capecitabine.
Results :
Software prediction resulted in that the compounds A14, C4, and C13 replaced with
B(OH)2 and/or Si(CH3)3 showed a broader spectrum of biological activity with a multi-targeted
manner than even the approved analogs.
Conclusion:
The interesting point of these new design molecules is to have either silicon and/or
boron incorporation. The increased bioactivity effect of Silicon and Boron incorporation is also seen
in the recently approved drug list of FDA and in clinical trials ongoing. Our new design boron and
silicon-based molecules appeared to be promising candidates for breast cancer treatment to be tested
in vitro, in vivo, and in the clinic for further pharmacological investigations.
Funder
Scientific and Technological Research Council of Turkey, TUBITAK
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献