Evaluating Phenyl Propanoids Isolated from Citrus medica as Potential Inhibitors for Mitotic kinesin Eg5

Author:

Makala Himesh1ORCID,Ulaganathan Venkatasubramanian1,Sivasubramanian Aravind1,Rajendran Narendran1,Subramanian Shankar1

Affiliation:

1. Department of Biotechnology, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu-613401, India

Abstract

Background: Human mitotic kinesins play an essential role in mitotic cell division. Targeting the spindle separation phase of mitosis has gained much attention in cancer chemotherapy. Spindle segregation is carried out mainly by the kinesin, Eg5. Many Eg5 inhibitors are in different phases of clinical trials as cancer drugs. This enzyme has two allosteric binding sites to which the inhibitors can bind. The first site is formed by loop L5, helix α2 and helix α3 and all the current drug candidates bind un-competitively to this site with ATP/ADP. The second site, formed by helix α4 and helix α6, which has gained attention recently, has not been explored well. Some inhibitors that bind to this site are competitive, while others are uncompetitive to ATP/ADP. Phenylpropanoids are pharmacologically active secondary metabolites. Methods: In this study, we have evaluated fourteen phenyl propanoids extracted from Citrus medica for inhibitory activity against human mitotic kinesin Eg5 in vitro steady-state ATPase assay. Ther interactions and stability using molecular docking and molecular dynamics simulations. Results and Discussions: Of the fourteen compounds tested, naringin and quercetin showed good activity with IC50 values in the micromolar range. Molecular docking studies of these complexes showed that both the molecules interact with the key residues of the active site predominantly thorough hydrophobic & aromatic π–π interactions consistent with the known inhibitors. Besides, these molecules also form hydrogen bonding interactions stabilizing the complexes. Molecular dynamics simulations of these complexes confirm the stability of these interactions. Conclusion: These results can be used as a strong basis for further modification of these compounds to design new inhibitors with higher potency using structure-based drug design.

Funder

ICMR

Science and Engineering Research Board, Department of Science and Technology

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3