Computational Analysis of Dynamical Fluctuations of Oncoprotein E7 (HPV 16) for the Hot Spot Residue Identification Using Elastic Network Model

Author:

Malik Rabbiah1ORCID,Fazal Sahar1,Kamal Mohammad Amjad1

Affiliation:

1. Capital University of Science and Technology, Islamabad, Pakistan

Abstract

Aims: To find out Potential Drug targets against HPV E7. Background: Oncoprotein E7 of Human Papilloma Virus (HPV-16), after invading human body alter host protein-protein interaction networks caused by the fluctuations of amino acid residues present in E7. E7 interacts with Rb protein of human host with variable residual fluctuations, leading towards the progression of cervical cancer. Objective: Our study was focused our computational analysis of the binding and competing interactions of the E7 protein of HPV with Rb protein. Methods: Our study is based on analysis of dynamic fluctuations of E7 in host cell and correlation analysis of specific residue found in motif of LxCxE, that is the key region in stabilizing interaction between E7 and Rb. Results and Discussion: Cysteine, Leucine and Glutamic acid have been identified as hot spot residues of E7 which can provide platform for drug designing and understanding of pathogenesis of cervical cancer, in future. Our study shows validation of the vitality of linear binding motifs LxCxE of E7 of HPV in interacting with Rb as an important event in propagation of HPV in human cells and transformation of infection into cervical cancer. Conclusion: Our study shows validation of the vitality of linear binding motifs LxCxE of E7 of HPV in interacting with Rb as an important event in propagation of HPV in human cells and transformation of infection into cervical cancer. Other: E7 interacts with Rb protein of human host with variable residual fluctuations, leading towards the progression of cervical cancer.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3