Affiliation:
1. Medicinal Chemistry Research Laboratory, SLT Institute of Pharmaceutical Sciences, Guru Ghasidas University, Bilaspur 495 009, (C.G.), India
Abstract
Background :
The ligand and structure based integrated strategies are being repeatedly
and effectively employed for the precise search and design of novel ligands against various disease
targets. Aroylindole derivative has a similar structural analogy as Combretastatin A-4, and exhibited
potent anticancer activity on several cancer cell lines.
Objective:
To identify structural features of aroylindole derivatives through 3D-QSAR and multiple
pharmacophore modelling for the search of novel colchicines inhibitor via virtual screening.
Method:
The present study utilizes ligand and structure based methodology for the establishment
of structure activity correlation among trimethoxyaroylindole derivatives and the search of novel
colchicines inhibitor via virtual screening. The 3D-QSAR studies were performed using Phase module
and provided details of relationship between structure and biological activity. A single ligand
based pharmacophore model was generated from Phase on compound 3 and compound 29 and three
energetically optimized structure based pharmacophore models were generated from epharmacophore
for co-crystallized ligand, compound 3 and compound 29 with protein PBD ID
1SA0, 5EYP and 5LYJ. These pharmacophoric features containing hit-like compounds were collected
from commercially available ZINC database and screened using virtual screening workflow.
Results and Discussion:
The 3D-QSAR model studies with good PLSs statistics for factor four was
characterized by the best prediction coefficient Q2 (0.8122), regression R2 (0.9405), SD (0.2581), F
(102.7), P (1.56e-015), RMSE (0.402), Stability (0.5411) and Pearson-r (0.9397). The generated epharmacophores
have GH scores over 0.5 and AUAC ≥ 0.7 indicated that all the pharmacophores
were suitable for pharmacophore-based virtual screening. The virtual screened compounds
ZINC12323179, ZINC01642724, and ZINC14238006 have showed similar structural alignment as
co-crystallized ligand and showed the hydrogen bonding of ligand with ASN101, SER178,
THR179, VAL238, CYS241 amino acid of protein.
Conclusion:
The study illustrates that the ligand and structure based pharmacophoric approach is
beneficial for identification of structurally diverse hits, having better binding affinity on colchicines
binding site as novel anticancer agents.
Funder
Science & Engineering Research Board-Department of Science & Technology
Indian Council for Medical Research
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献