Affiliation:
1. Institute of Molecular Biology and Biotechnology, the University of Lahore, Lahore, Pakistan
2. College of Pharmacy, South-Central University for Nationalities, Wuhan 430074, China
3. College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
4. Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences (UVAS), Lahore, Pakistan
5. Department of Pharmacy, COMSATS University Islamabad, Lahore Campus 54000, Pakistan
Abstract
Background:
Glycyrrhiza uralensis, also known as liquorice, is a herbal remedy that is traditionally used worldwide for treating respiratory ailments and ameliorating breathing.
Objective:
The objective of this systematic study was to investigate active ingredients of Glycyrrhiza uralensis and determine its mode of action in silico against severe and acute respiratory complications of respiratory ailments through network pharmacology and molecular docking studies.
Methods:
TCMSP database search helped retrieve the compounds of Glycyrrhiza uralensis and their protein targets, especially related to respiratory ailments. Subsequently, the protein-protein association was attained as a network by using the STITCH database. Cytoscape and its ClueGO plugin were used to study gene ontology (GO) enrichment. In addition, seven natural compounds were docked in the active site of four different molecular targets; JUN-FOS, COX2, MAPK14 and IL-6, to identify the binding mechanism of ligands under study.
Results:
TCMSP database search resulted in the retrieval of 280 compounds of Glycyrrhiza uralensis (including formononetin, naringenin, sitosterol, isorhamnetin, kaempferol, quercetin and Glycyrrhizin) and 135 protein targets. A careful study of targets showed that 26 prospective targets (including JUN, FOS, IL6, MAPK14 and PTGS2) related to respiratory ailments were identified. Gene ontology (GO) enrichment analysis resulted in the retrieval of 176 GO terms, which were associated with respiratory ailments. This study proposed that Glycyrrhiza uralensis acts against respiratory ailments through various proteins, such as JUN, FOS, IL6, MAPK14 and PTGS2. Docking results revealed that among all studied ligands, the flavonoid-based compounds isorhamnetin and kaempferol form stronger complexes with JUN-FOS-DNA, MAPK-14, and IL-6 proteins (Cscore=6.81, 4.27, and 4.77, respectively) and the saponin based compound glycyrrhizin (Cscore=13.07) demonstrated stronger binding affinity towards COX2 enzyme.
Conclusion:
Conclusively, isorhamnetin, kaempferol and glycyrrhizin in Glycyrrhiza uralensis may regulate several signaling pathways through JUN-FOS-DNA, MAPK-14, and IL-6, which might play a therapeutic role against respiratory ailments.
Publisher
Bentham Science Publishers Ltd.
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献