Nalidixic Acid Schiff Bases: Synthesis and Biological Evaluation

Author:

Husain Asif1,Varshney Munendra M.2,Parcha Versha3,Ahmad Aftab4,Khan Shah A.5

Affiliation:

1. Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi-110062, India

2. Faculty of Pharmacy, Uttrakhand Technical University, PO Chandanwadi, Prem Nagar, Suddhowala, Dehradun-248007, Uttarakhand, India

3. Sardar Bhagwan Singh Post Graduate Institute of Biomedical Sciences, Dehradun, (U.K), India

4. Health Information Technology Department, Jeddah Community College, King Abdulaziz University, Jeddah-21589, Saudi Arabia

5. Department of Pharmacy, Oman Medical College, Muscat, Oman

Abstract

Background: The prevalence of morbidity and mortality due to infections from parasitic worms and protozoa is on rise especially in third world countries. The situation is further worsened by drug resistant microbial pathogens. Objectives: The antimicrobial and anthelmintic activities associated with substituted furfuraldehyde and 1,8-naphthyridine nucleus of nalidixic acid prompted us to synthesize some new quinolone Schiff bases with an aim to obtain potent antibacterial and anthelmintic agents with improved safety and efficacy. Methods: A new series of 1,8 naphthyridine based Schiff bases were designed and synthesized by the reaction of Nalidixic acid methyl ester 1 with hydrazine hydrate in anhydrous condition which yielded 1-ethyl-1,4-dihydro-7-methyl-4-oxo-1,8-naphthyridine-3-carbohydrazide 2. The compound 2 was further treated with several furfural aldehydes to furnish the desired Schiff bases (3a-k). The in vitro antibacterial activity of Schiff bases was investigated against four Gram positive and four Gram negative bacterial strains. The newly prepared Schiff bases were also tested for their anthelmintic activity against Pheritima posthuma and Perionyx excavatus. Results: Chemical structures and identity of the prepared compounds were confirmed by their spectral data. Overall, Schiff bases (3a-k) showed good antimicrobial activity and interestingly five compounds exhibited more potent inhibitory effect than the standard drug Ampicillin against S. aureus, B. cereus, E. faecalis, S. epidermidis, E. coli, S. typhi and S. dysenteriae. Schiff bases also exhibited significant anthelmintic activity as indicated by their mean paralyses time (min) of 7.07-16.49, and 11.23- 20.46 min against Perionyx excavatus and Pheritima posthuma in comparison to the 8.23 and 12.58 min shown by standard drug- Albendazole. Conclusion: It could be proposed that substitution of aromatic ring at C-5 of furfuryl heterocyclic ring in the Schiff bases produce compounds with promising antibacterial and anthelmintic actions.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3