Optimization of Pharmacophore of Novel Hybrid Nucleus of 1,3,4- oxadiazole-chalcone using Literature Findings and In silico Approach as EGFR Inhibitor

Author:

Patil Shital M.1,Bhandari Shashikant V.1

Affiliation:

1. Department of Pharmaceutical Chemistry, A.I.S.S.M.S College of Pharmacy, near RTO, Kennedy Road, Pune 411001, Maharashtra, India

Abstract

Background: Cancer is a leading cause of death worldwide. EGFR is one of the important targets considered for current chemotherapeutic agents. The problem of drug resistance can be overcome by the use of hybrid molecules. A hybrid of 1,3,4-oxadiazole and chalcone has been proved to be an anti- EGFR inhibitor. Objective: The aim of the study was to carry out pharmacophore optimization of the hybrid nucleus of 1,3,4- oxadiazole and chalcone by using literature findings and in-silico approach. A series of 24 substituted hybrid molecules of 2-(5-phenyl-1,3,4-oxadiazol-2-ylthio)-N-(4-((Z)-3-phenylacryloyl)phenyl)acetamide derivatives were subjected to 2D and 3D QSAR studies. Method: The survey of literature was carried out for selected hybrid nucleus using different available databases. The 2D QSAR was performed by using the MLR, PLS, and PCR methods, while 3D QSAR was performed using the KNN-MFA method. Result: A summary of literature findings was prepared. For 2D QSAR, statistically significant model was obtained for the MLR method with r2=0.9128, q2=0.8065. For the 3D QSAR model, I was found to be significant with q2=0.834. The pharmacophoric requirements for inhibition of EGFR were optimized by use of the evidence attained after the generation of descriptors from QSAR studies and literature findings. Conclusion: This optimized pharmacophore will be useful in further drug design process.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3