Design and Analysis of Pharmacokinetics, Pharmacodynamics and Toxicological Analysis of Cannabidiol Analogs using In Silico Tools

Author:

Costa Eduardo Damasceno1,Mendes Júnior Carlos Roberto1

Affiliation:

1. Department Pharmacy, Faculty of Life Sciences, Sete Lagoas, Minas Gerais, Brazil

Abstract

Background: Cannabidiol (CBD), a non-psychoactive phytocannabinoid from Cannabis Sativa, has become an interesting option for medicinal chemists in the development of new drug candidates. Objective: This study aims to propose analogs with therapeutic potential from the CBD scaffold. Methods: The 16 analogs proposed were designed using the PubChem Sketcher V. 2.4® software. Already, CBD analogs were subjected to different in silico tools, such as Molinspiration®; SwissADME®; SwissTargetPrediction®, and OSIRIS Property Explorer®. Results and Discussion: The screening of CBD analogs carried out in this study showed compounds 9 and 16 with a good affinity for interactions with CB1 and CB2 receptors. Pharmacokinetic data showed that these two compounds have good oral absorption. Finally, in silico toxicity data showed that these compounds pose no risk of a toxic event in humans. Conclusion: CBD analogs 9 and 16 would have a better profile of drug candidates to be further tested in vitro and in vivo models.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3