BHTCM Protects Müller Cells from Diabetic Retinopathy by Reducing Abnormal Changes of Kir4.1 and AQP4, Suppressing VEGF and IL-1β, and Enhancing PEDF Production

Author:

Xie Xuejun1,Zhang Mei2,Wu Haiyan3,Yang Jie4,Qin Xuewei5,Mo Ya1,Wan Li6

Affiliation:

1. Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China

2. School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China

3. Eye School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan Province, People's Republic of China

4. Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China

5. Department of Ophthalmology, The First Affiliated Hospital of Guiyang College of Traditional Chinese Medicine, Guiyang, China

6. Chengdu Sport Institute, Chengdu, China

Abstract

Background: In the diabetic condition, damage to the Müller cells contributes to the pathogenesis of diabetic retinopathy. Aims: This study aimed to investigate the protective effect of Bushen Huoxue, Traditional Chinese Medicine (BHTCM), on Müller in diabetic retinopathological conditions. Methods: Primary rat retinal Müller cells (RRMC) were isolated and cultured under high glucose (50 nmol/L). The advanced glycation end products (AGEs) and sodium dithionite were applied to treat highglucose administrated RRMC to mimic diabetic retinopathological conditions. The effects of BHTCM on diabetic retinopathological RRMC were evaluated. The expressions of aquaporin-4 (AQP4) and Kir4.1 were determined by double-labeling immunofluorescence and ELISA. Levels of vascular endothelial growth factor (VEGF), interleukin-1β (IL-1β) and pigment epithelium-derived factor (PEDF) were examined with ELISA. Lactate dehydrogenase (LDH) activity was also evaluated. Results: Retinal Müller cells were successfully isolated and identified. RRMC treated with AGEs and sodium dithionite resulted in the increase of AQP4 and decrease of Kir4.1 in RRMC, increase of VEGF and IL-1β secretion, increase of LDH activity, decrease of PEDF secretion in culture medium, all of which, in a dose-dependent or time-dependent manner. Post treating RRMC with AGEs and dithionite, BHTCM reversed changes in expression of AQP4 and Kir4.1 in RRMC, and reversed VEGF levels, PEDF and IL-1β secretion in the culture medium. Moreover, BHTCM reversed the decrease of RRMC cell membrane integrity after AGEs and dithionite treatment. Conclusions: BHTCM protected Müller cells from diabetic damage by reducing abnormal changes of Kir4.1 and AQP4, inhibiting VEGF and IL-1β, increasing PEDF production, and maintaining cell membrane integrity. Therefore, BHTCM is a potential drug for the treatment of diabetic retinopathy, which can correct the function of Müller cells.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3