Synthesis of Novel Urea and Sulfonamide Derivatives of Isatin Schiff Bases as Potential Anti-cancer Agents

Author:

Ölgen Süreyya1ORCID,Demirel Ural U.2ORCID,Karaman Ecem F.34ORCID,Tanol Mehmet2ORCID,Özden Sibel3ORCID,Göker Hakan5ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Biruni University, Istanbul, Turkey

2. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Altınbaş University, Istanbul, Turkey

3. Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey

4. Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Biruni University, Istanbul, Turkey

5. Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey

Abstract

Background: Among the many types of chemical scaffolds, isatin derivatives, including their Schiff bases, have been extensively studied to find novel therapeutic agents against cancer. Amide or urea groups containing derivatives were also discovered to be tyrosine kinase inhibitors. Objective: This study aims to find potent compounds by designing 16 novel urea and sulfonamide derivatives of isatin Schiff bases. Method: Compounds were tested against PC-3, HepG2, SH-SY5Y, A549 cancerous, and NIH/3T3 noncancerous cell lines using cell culture assay. Results: Among the tested compounds 7a, 7b, 7c, 7d, 7h, 8a, and 8f presented potential inhibitions against cellular proliferation activities of HepG2 cells with average IC50 values of 31.97, 42.13, 31.50, 47.98, 32.59, 43.44, and 37.81 μM, respectively. They showed better inhibition potencies than the reference compound doxorubicin, and its value was measured as 51.15 μM in the same culture assay. The cytotoxic activities of the compounds in other cell lines were found to be less potent compared to doxorubicin. Conclusion: In vitro experiments demonstrated that designed compounds have the first evidence that they might be active against hepatocellular carcinoma. According to ADME prediction results, all compounds presented drug-like and good metabolic properties.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3