Remifentanil and propofol co-loaded nanoemulsion: Formulation development and in vivo pharmacodynamic evaluation

Author:

Tian Hang1,Hou Lei2

Affiliation:

1. Department of Anesthesiology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China

2. Department of Anesthesiology, Shanxi Provincial Cancer Hospital, Taiyuan, Shanxi, P.R. China

Abstract

Background: The present work is an effort to develop a novel propofol (PPF) and remifentanil (RFT) co-loaded nanoemulsion (NME) for the treatment of anesthetic effects. Methods: The PPF/RFT NME was prepared via the high pressure homogenization method. Its physicochemical properties were assessed to ensure good quality and suitability for i.v. administration. We also studied the in vivo pharmacokinetics and pharmacodynamics of PPF/RFT NME in dogs with an optimized formulation. Results: In this study, the results showed that the mean particle size of PPF/RFT NME was 124.2 nm and the zeta potential was −20.6 mV. In the stability test, the NME maintained a good round shape, and did not demonstrate any significant changes in physicochemical characteristics. In terms of the in vitro release, the early burst release of the NME preparations containing PPF or RFT was ideal in clinical practice, where a loading dose or a rapid onset of the drug was required. Based on histopathological observations, no histological change occurred to the rat organs after the administration of PPF/RFT NME. In regard to pharmacodynamics, compared with the combination group at the same dose, PPF/RFT NME could make animals enter the anesthetic state faster and the anesthetic effects last longer. In addition, vital signs of PPF/RFT NME could be maintained in a good state while better effects were delivered. Conclusions: In this study, PPF and RFT were used to prepare a compound NME. This could reduce the anesthesiologist's administration time and make the anesthesia process more efficient.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3