Antimicrobial Activity and Metabolite Fingerprinting of a Microcolonial Fungal Isolate TD-082 from the Arid Thar Desert, India

Author:

Sarethy Indira P.1,Srivastava Nidhi12,Gupta Shivangi1,Bhatt Bhawna1,Sharma Paresh1,Ibeyaima Ahongshangbam1

Affiliation:

1. Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, 201309, India

2. Research and Development Department, Decode DNA Pvt. Ltd., 16/2 Ashok Nagar, New Delhi, 110018, India

Abstract

Aims:: This study aimed at bioprospecting underexplored extreme habitats (Thar desert, India) for novel bio- and chemo-diversity. Background:: Bioactive metabolites from microorganisms, such as fungi from underexplored habitats, serve as basic skeletons of therapeutic agents, including antimicrobials, combating the effect of multidrug resistance of pathogens. Objectives:: The main objectives of the current study are (i) characterization of isolate TD-082 and (ii) metabolite fingerprinting of butanol extract showing antimicrobial compounds. Methods:: In search of novel antimicrobial drugs, a promising microcolonial fungus TD-082, obtained from the Thar Desert, India, was identified by ITS1–5.8S–ITS2 sequencing. Phenotypic characteristics were marked by microscopy. The fungus was investigated for antimicrobial activity against a panel of Gram-positive, Gram-negative bacteria and fungi. Butanol extract that showed the best antimicrobial activity was partially purified; fractions exhibiting antimicrobial activity were pooled and fingerprinted by GC-MS analysis. Results:: Sequencing data indicated that the isolate belonged to Aureobasidium sp. It showed 96% similarity to Aureobasidium iranianum and Kabatiella bupleuri, and 95 % to A. thailandense and A. subglaciale. Microscopy results confirmed that it belongs to Aurebasidium sp. Metabolite fingerprinting showed tentatively ten novel compounds belonging to three major categories, hydrocarbons, fatty acids, and peptides. Conclusion:: The study shows that understudied habitats, such as deserts, can provide skeletons for novel compounds from novel microorganisms. The study can be expanded to other niche habitats with higher chances of identifying more novel bioactive compounds.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3