Nitrogen-containing Heterocyclic Derivatives of 1,3-Thiazolidine-2,4- Diones as Dual Anti-inflammatory and Anti-oxidant Agents and their Docking Studies

Author:

Chawla Pooja A.12,Srivastava Priyanka1,Teli Ghanshyam2

Affiliation:

1. Department of Pharmaceutical Chemistry, BBDNITM Lucknow, Uttar Pradesh, India

2. Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab, 142001, India

Abstract

Aim: The aim of this study was to carry out synthesis and characterization of nitrogencontaining heterocyclic derivatives of 1,3-thiazolidine-2,4-diones as dual anti-inflammatory and antioxidant agents and their docking studies. Background: Inflammation is a protective mechanism of our body to reduce injury and infection by microorganisms. The COX-2 enzyme is responsible for the production of prostaglandins (PG1), which are responsible for pain, fever, and a variety of other inflammatory symptoms. Reactive oxygen species (ROS) are important signalling molecules during inflammatory diseases. In an inflammatory state, polymorphonuclear neutrophils (PMNs) produce oxidative stress, which causes inter-endothelium junctions to open and the transfer of inflammatory cells over the endothelial barrier to increase. Tissue damage is caused by these inflammatory cells. Objective: The objective was to club thiazolidinediones with benzimidazole, triazole, and indole to achieve an enhanced anti-inflammatory effect. Method: In the current report, we have synthesized three new series of indole/ benzimidazole/benzotriazole clubbed with 5-arylidene-2,4-thiazolidinediones. The synthesized compounds were tested for in vivo anti-inflammatory activity using a carrageenan-induced rat paw edema model and in vitro antioxidant activity using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing ability of plasma (FRAP) and hydrogen peroxide methods. Result: The results demonstrated that the compound PC-5 exhibited significant anti-inflammatory activity with 61.9% inhibition in comparison to the standard drug diclofenac sodium (71.4% inhibition) after 3h. The compound PC-5 exerted the highest antioxidant activity with an IC50 value of 24.68 μM amongst all synthesized compounds. Acute toxicity was also evaluated for all synthesized compounds, and the results indicated that all evaluated compounds were nontoxic in animals. The replacement of benzotriazole with benzimidazole and indole moieties diminished the anti-inflammatory activity. The hydroxysubstituted arylidene showed higher activity than methoxy, chloro substituted arylidene-2,4- thiazolididiones. Docking studies revealed that the compound PC-5 showed higher inhibition activity against the COX-2 receptor rather than COX-1. The ADME properties were also assessed that showed no violation of Lipinski’s rule and no toxicity. Conclusion: The substituents were found to exert varied activity. The docking studies revealed that the compounds showed lesser binding energy with COX-1 as compared to standard drug diclofenac. Moreover, the binding with COX-2 exhibited more binding energy, thereby proving to have specific COX2 inhibitory activity. All synthesised compounds have shown good antioxidant activity in addition to antiinflammatory activity. PC-5, PC-4, PB-5, PB-4, PA-5, and PA-4 were found to have increased antioxidant activity. Because of the presence of an electron-releasing hydroxyl group, PC-5 has proven to be a highly potent antioxidant agent.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3