Structure-guided Development of Novel Benzothiophene Derivatives as PLK1-PBD Inhibitors

Author:

Yang Jixia1,Zhang Yue2,Huang Daowei3,Zhang Jing2,Yang Xiaocong3,Tan Xiangduan4,Chai Tingting3,Ma Lindeng3,Zhao Bingyang3,Chen Ying3

Affiliation:

1. School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China

2. Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China

3. School of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

4. School of Pharmacy, Guilin Medical University, Guilin 541199, China

Abstract

Background: Polo-like kinase 1 (PLK1), a validated target for tumor therapy, plays a key role in mitosis and is over-expressed in many tumors. In addition to its N-terminal kinase domain, PLk1 also harbors a C-terminal polo-box domain (PBD). Objective: A candidate based on PLK1-PBD was developed as a promising compound for future development. Method: Seventeen small molecule PLK1-PBD inhibitors were designed, synthesized and evaluated for PLK1-PBD inhibitory activities by fluorescence polarization (FP) assay. The compounds with better inhibitory activities were further assessed for their anti-proliferative activities using a CCK-8 method. Results: The inhibitory rates of compounds 7a, 7d, 14a, 14d, 14e and 14f exceeded 98%. The IC50 values of compounds 7d, 14d, 14e, and 14f were 0.73 μM, 0.67 μM, 0.89 μM and 0.26 μM, proving better than MCC1019. Compound 14f showed the best inhibitory activity (IC50: 0.26 μM) and antiproliferative activities against three cancer cell lines (HeLa, HepG2 and MG63). Especially, compound 14f also exhibited acceptable safety profiles in the human ether-a-go-go related gene (hERG) and normal cell tests. The results of docking and prediction studies indicated that compound 14f had a high binding affinity to the target, with good drug-like absorption, distribution, metabolism, elimination, and toxicity (ADMET) properties. Conclusion: Compound 14f can be a promising compound for future development.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3