Coronavirus Inhibitory Activity of Tamarind Indica

Author:

Danao Kishor1ORCID,Shivhare Ruchi1ORCID,Nandurkar Deweshri1ORCID,Rokde Vijayshri1ORCID,Mahajan Ujwala1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, RTMNU, Nagpur-440037 Maharashtra, India

Abstract

Background: SARS-COVID-19 is an infectious disease, the causative agent Caroni virus. WHO announced the pandemic on 3rd November 2020 to the whole world. Objective: Severe Acute Respiratory Syndrome COVID-19 is an infectious disease globally declared a pandemic by WHO. There is a need to find the proper medication for recovery. The study uses the molecular docking method to predict the anti-covid activity of plant phytoconstituents of Tamarind indica. Methods: Molecular docking techniques were accomplished to search the binding pattern of plant phytoconstituents of T. indica against the crystal structure SARS-CoV-2 enzyme (PDB ID: 6LU7) with the help of PyRx virtual screening software to study the amino acid interaction and inhibitory potential of phytoconstituents of T. indica. In addition, we performed a pharmacokinetic and toxicological study of plant phytoconstituents of T. indica using SwissADME and the pkCSM online server. Results: The phytoconstituents of Plant T. indica docking results proposed that apigenin (-7.8 kcal/mol), epicatechin (-7.1 kcal/mol) and taxifolin (-7.5 kcal/mol) show the best binding energy as compared to favipiravir (-5.2 kcal/mol). The phytoconstituents exposed promising interaction with amino acid residue, leading to an inhibitory effect against the SARS-CoV-2 enzyme (PDB ID: 6LU7). Further, ADMET studies showed that pharmacokinetics and toxicological parameters are within acceptable limits. Conclusion: In silico study revealed that the phytochemicals of T.indica show promising inhibitory results against the SARS-CoV-2 enzyme (PDB ID: 6LU7). Moreover, the traditional benefits of T.indica were clinical treatment and drug discovery.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3