Design and synthesis of gefitinib derivatives as potential drugs for cancer treatment: antiproliferative activity, molecular docking, and ADMET prediction

Author:

Lu Yunlong1,Ma Xiaoyan1,Shan Min1

Affiliation:

1. Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.

Abstract

Background: Non-small cell lung cancer is one of the most common cancers worldwide, and targeted chemotherapy has become a kind of the main treatment. Gefitinib, the most widely studied targeted agent in non-small cell lung cancer, is an orally active tyrosine kinase inhibitor. However, gefitinib inevitably generates acquired drug resistance, leading to treatment failure. Objective: A new class of compounds containing 4-anilinoquinazoline lead structure was designed and synthesized by modifying the structure of gefitinib. These compounds are expected to exert better anticancer activity and better binding to the EGFR-TK domain, enrich the structure of 4-anilinoquinazoline derivatives and inspire further structural modifications. Method: The antiproliferative activity of nine derivatives was determined in three cancer cell lines (A549, PC9, and HepG2) using the MTT method. The ADMET profile of all compounds was predicted, and the binding affinity of the compounds (5 and 6) to EGFR was predicted by Schrödinger. In addition, the effect of these compounds (3-6) in inducing apoptosis in HepG2 cells was also studied. Results: Four (3, 5, 6 and 9) of the newly synthesized derivatives exhibited superior antiproliferative activity against A549 to gefitinib (IC50 = 12.64 ± 3.59 μM), with compound 5 having the best activity (IC50 = 7.39 ± 1.24 μM). Moreover, the ability of compounds (3-6) to induce HepG2 cell apoptosis was significantly better than that of gefitinib. Conclusion: Nine structures (compounds 2-10) were synthesized and characterized, and compound 5 had the best antiproliferative activity. Compound 3 possessed the best ability to induce HepG2 apoptosis. Also, ADMET calculations were performed in silico, and the results revealed that compound 3 has more suitable characteristics as a potential drug candidate.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3