Microwave-assisted Synthesis and Docking Studies of Phenylureas as Candidates for the Drug Design Against the Biological Warfare Agent Yersinia Pestis

Author:

França Tanos Celmar Costa1,Bastos Leonardo da Costa1,Cuya Teobaldo2,Sirouspour Mehdi3,Chacón-Huete Franklin3,Bendahan David3,Forgione Pat3

Affiliation:

1. Laboratory of Molecular Modeling Applied to the Chemical and Biological Defense (LMCBD), Military Institute of Engineering, Rio de Janeiro, RJ, Brazil

2. Faculty of Technology, Department of Mathematics, Physics and Computation, University of the State of Rio de Janeiro, Resende, RJ, Brazil

3. Department of Chemistry and Biochemistry, Concordia University, Montreal, QC, Canada

Abstract

Background: Bubonic plague is amongst the diseases with the highest potential for being used in biological warfare attacks today. This disease, caused by the bacterium Yersina pestis, is highly infectious and can achieve 100% of fatal victims when in its most dangerous form. Besides, there is no effective vaccine, and the chemotherapy available today against plague is ineffective if not administered at the beginning of the infection. Objective: Willing to contribute for changing this reality we propose here new phenylureas as candidates for the drug design against plague meant to target the enzyme dihydrofolate reductase from Y. pestis (YpDHFR). Methods: Seven phenylureas, four of them new, were synthesized, following synthetic routes adapted from procedures available in the literature, and using microwave irradiation. After, they were submitted to docking studies inside YpDHFR and human DHFR (HssDHFR) in order to check their potential as selective inhibitors. Results: Our results revealed four new phenylureas and a new synthetic route for this kind of molecule using microwave irradiation. Also, our docking studies showed that these compounds are capable of binding to both HssDHFR and YpDHFR, with U1 - U4 and U23 showing more selectivity for HssDHFR and U7, U8 being more selective towards YpDHFR. Conclusion: We reported the synthesis with good yields of seven phenylureas, following a simple and clean alternative synthetic route using microwave irradiation. Further molecular docking studies of our compounds suggested that two are capable of binding more selectivity to YpDHFR, qualifying as potential candidates for the drug design of new drugs against plague.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Research Support Foundation for the State of Rio de Janeiro

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Pharmaceutical Science,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3