Graph Convolutional Capsule Regression (GCCR): A Model for Accelerated Filtering of Novel Potential Candidates for SARS-CoV-2 based on Binding Affinity

Author:

Krishnan Aravind1,Vinod Dayanand1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Amrita School of Computing, Coimbatore, Amrita Vishwa Vidyapeetham, Amritanagar, Ettimadai, Tamil Nadu, 641112, India

Abstract

Background: There has been a growing interest in discovering a viable drug for the new coronavirus (SARS-CoV-2) since the beginning of the pandemic. Protein-ligand interaction studies are a crucial step in the drug discovery process, as it helps us narrow the search space for potential ligands with high drug-likeness. Derivatives of popular drugs like Remdesivir generated through tools employing evolutionary algorithms are usually considered potential candidates. However, screening promising molecules from such a large search space is difficult. In a conventional screening process, for each ligand-target pair, there are time-consuming interaction studies that use docking simulations before downstream tasks like thermodynamic, kinetic, and electrostatic-potential evaluation. Objective: This work aims to build a model based on deep learning applied over the graph structure of the molecules to accelerate the screening process for novel potential candidates for SARS-CoV-2 by predicting the binding energy of the protein-ligand complex. Methods: In this work, ‘Graph Convolutional Capsule Regression’ (GCCR), a model which uses Capsule Neural Networks (CapsNet) and Graph Convolutional Networks (GCN) to predict the binding energy of a protein-ligand complex is being proposed. The model’s predictions were further validated with kinetic and free energy studies like Molecular Dynamics (MD) for kinetic stability and MM/GBSA analysis for free energy calculations. Results: The GCCR showed an RMSE value of 0.0978 for 81.3% of the concordance index. The RMSE of GCCR converged around the iteration of just 50 epochs scoring a lower RMSE than GCN and GAT. When training with Davis Dataset, GCCR gave an RMSE score of 0.3806 with a CI score of 87.5%. Conclusion: The proposed GCCR model shows great potential in improving the screening process based on binding affinity and outperforms baseline machine learning models like DeepDTA, KronRLS, Sim- Boost, and other Graph Neural Networks (GNN) based models like Graph Convolutional Networks (GCN) and Graph Attention Networks (GAT).

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Graph Auto Encoders for Content-based Document Recommendation System;2023 4th IEEE Global Conference for Advancement in Technology (GCAT);2023-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3