Discovery of a Potential Allosteric Site in the SARS-CoV-2 Spike Protein and Targeting Allosteric Inhibitor to Stabilize the RBD Down State using a Computational Approach

Author:

Li Tong1,Yan Zheng2,Zhou Wei1,Liu Qun1,Liu Jinfeng3,Hua Haibing2

Affiliation:

1. School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 210009, China

2. The Affiliated Jiangyin Hospital of Nanjing University of Chinese Medicine, Jiangyin 214400, China

3. School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China

Abstract

Background: The novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to a worldwide public health crisis. At present, the development of effective drugs and/or related therapeutics is still the most urgent and important task for combating the virus. The viral entry and associated infectivity mainly rely on its envelope spike protein to recognize and bind to the host cell receptor angiotensin-converting enzyme 2 (ACE2) through a conformational switch of the spike receptor binding domain (RBD) from inactive to active state. Thus, it is of great significance to design an allosteric inhibitor targeting spike to lock it in the inactive and ACE2-inaccessible state. Objective: This study aims to discover the potential broad-spectrum allosteric inhibitors capable of binding and stabilizing the diverse spike variants, including the wild type, Delta, and Omicron, in the inactive RBD down state. Methods: In this work, we first detected a potential allosteric pocket within the SARS-CoV-2 spike protein. Then, we performed large-scale structure-based virtual screening by targeting the putative allosteric pocket to identify allosteric inhibitors that could stabilize the spike inactive state. Molecular dynamics simulations were further carried out to evaluate the effects of compound binding on the stability of spike RBD. Result: Finally, we identified three potential allosteric inhibitors, CPD3, CPD5, and CPD6, against diverse SARS-CoV-2 variants, including Wild-type, Delta, and Omicron variants. Our simulation results showed that the three compounds could stably bind the predicted allosteric site and effectively stabilize the spike in the inactive state. Conclusion: The three compounds provide novel chemical structures for rational drug design targeting spike protein, which is expected to greatly assist in the development of new drugs against SARS-CoV-2.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3