Predicting the mechanism of Tiannanxing-Shengjiang drug pair in treating pain using network pharmacology and molecular docking technology

Author:

Fan Bifa1,Wang Boning2,Wang Yanlei2,Mao Peng1,Zhang Yi1,Li Yifan1,Liu Xing2

Affiliation:

1. Department of Pain Medicine, China-Japan Friendship Hospital, Beijing 100029, China

2. Graduate School of Beijing University of Chinese Medicine, Beijing 100029, China

Abstract

Objective: This study aimed to analyze the potential targets and mechanism of the Tiannanxing-Shengjiang drug pair in pain treatment using network pharmacology and molecular docking technology. Methods: The active components and target proteins of Tiannanxing-Shengjiang were obtained from the TCMSP database. The pain-related genes were acquired from the DisGeNET database. The common target genes between Tiannanxing-Shengjiang and pain were identified and subjected to the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analyses on the DAVID website. AutoDockTools and molecular dynamics simulation analysis were used to assess the binding of the components with the target proteins. Results: Ten active components were screened out, such as stigmasterol, β-sitosterol, and dihydrocapsaicin. A total of 63 common targets between the drug and pain were identified. GO analysis showed the targets to be mainly associated with biological processes, such as inflammatory response and forward regulation of the EKR1 and EKR2 cascade. KEGG analysis revealed 53 enriched pathways, including pain-related calcium signaling, cholinergic synaptic signaling, and serotonergic pathway. Five compounds and 7 target proteins showed good binding affinities. These data suggest that Tiannanxing-Shengjiang may alleviate pain through specific targets and signaling pathways. Conclusion: The active ingredients in Tiannanxing-Shengjiang might alleviate pain by regulating genes, such as CNR1, ESR1, MAPK3, CYP3A4, JUN, and HDAC1 through the signaling pathways, including intracellular calcium ion conduction, cholinergic prominent signaling, and cancer signaling pathway.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3