A New Optimized Hybridization Approach for in silico High Throughput Molecular Docking on FPGA Platform

Author:

Jarrah Amin1,Lababneh Jawad1

Affiliation:

1. Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, 21163, Jordan

Abstract

Background: The development process of a new drug should be a subject of continuous evolution and rapid improvement as drugs are essential to treat a wide range of diseases of which many are life-threatening. The advances in technology resulted in a novel track in drug discovery and development known as in silico drug design. The molecular docking phase plays a vital role in in silico drug development process. In this phase, thousands of 3D conformations of both the ligand and receptor are generated and the best conformations that create the most stable drug-receptor complex are determined. The speed in finding accurate and high-quality complexes depends on the efficiency of the search function in the molecular docking procedure. Objective: The objective of this research is to propose and implement a novel hybrid approach called hABCDE to replace the EMC searching part inside the BUDE docking algorithm. This helps in reaching the best solution in a much accelerated time and higher solution quality compared to using the ABC and DE algorithms separately. Methods: In this work, we have employed a new approach of hybridization between the Artificial Bee Colony (ABC) algorithm and the Differential Evolution (DE) algorithm as an alternative searching part of the Bristol University Docking Engine (BUDE) in order to accelerate the search for higher quality solutions. Moreover, the proposed docking approach was implemented on Field Programmable Gate Array (FPGA) parallel platform using Vivado High-Level Synthesis Tool (HLST) in order to optimize and enhance the execution time and overall efficiency. The NDM-1 protein was used as a model receptor in our experiments to demonstrate the efficiency of our approach. Results: The NDM-1 protein was used as a model receptor in our experiments to demonstrate the efficiency of our approach. The results showed that the execution time for the BUDE with the new proposed hybridization approach was improved by 9,236 times. Conclusion: Our novel approach was significantly effective to improve the functionality of docking algorithms (Bristol University Docking Engine (BUDE)).

Funder

Deanship of Scientific Research and Graduate Studies at Yarmouk University

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3