Identification of Novel Phyto-chemicals from Ocimum basilicum for the Treatment of Parkinson’s Disease using In Silico Approach

Author:

Mubashir Nageen1,Fatima Rida1,Naeem Sadaf1

Affiliation:

1. Bioinformatics & Biophysics Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan

Abstract

Background: Parkinson’s disease is characterized by decreased level of dopaminergic neurotransmitters and this decrease is due to the degradation of dopamine by protein Monoamine Oxidase B (MAO-B). In order to treat Parkinson’s disease, MAO-B should be inhibited. Objective: To find out the novel phytochemicals from plant Ocimum basilicum that can inhibit MAO-B by using the in silico methods. Methods: The data of chemical constituents from plant Ocimum basilicum was collected and inhibitory activity of these phytochemicals was then predicted by using the Structure-Based (SB) and Ligand-Based Virtual Screening (LBVS) methods. Molecular docking, one of the common Structure-Based Virtual Screening method, has been used during this search. Traditionally, molecular docking is used to predict the orientation and binding affinity of the ligand within the active site of the protein. Molegro Virtual Docker (MVD) software has been used for this purpose. On the other hand, Random Forest Model, one of the LBVS method, has also been used to predict the activity of these chemical constituents of Ocimum basilicum against the MAO-B. Results: During the docking studies, all the 108 compounds found in Ocimum basilicum were docked within the active site of MAO-B (PDB code: 4A79) out of which, 57 compounds successfully formed the hydrogen bond with tyr 435, a crucial amino acid for the biological activity of the enzyme. Rutin (-182.976 Kcal/mol), Luteolin (-163.171 Kcal/mol), Eriodictyol-7-O-glucoside (- 160.13 Kcal/mol), Rosmarinic acid (-133.484 Kcal/mol) and Isoquercitrin (-131.493 Kcal/mol) are among the top hits with the highest MolDock score along with hydrogen interaction with tyr 435. Using the RF model, ten compounds out of 108 chemical constituent of Ocimum basilicum were predicted to be active, Apigenin (1.0), Eriodictyol (1.0), Orientin (0.876), Kaempferol (0.8536), Luteolin (0.813953) and Rosmarinic-Acid (0.7738095) are predicted to be most active with the highest RF score. Conclusion: The comparison of the two screening methods show that the ten compounds that were predicted to be active by the RF model, are also found in top hits of docking studies with the highest score. The top hits obtained during this study are predicted to be the inhibitor of MAO-B, thus, could be used further for the development of drugs for the treatment of Parkinson’s disease (PD).

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3