QSPR Models to Predict Thermodynamic Properties of Cycloalkanes Using Molecular Descriptors and GA-MLR Method

Author:

Joudaki Daryoush1,Shafiei Fatemeh1

Affiliation:

1. Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

Aims and Objectives: QSPR models establish relationships between different types of structural information to their observed properties. In the present study the relationship between the molecular descriptors and quantum properties of cycloalkanes is represented. Materials and Methods: Genetic Algorithm (GA) and Multiple Linear Regressions (MLR) were successfully developed to predict quantum properties of cycloalkanes. A large number of molecular descriptors were calculated with Dragon software and a subset of calculated descriptors was selected with a genetic algorithm as a feature selection technique. The quantum properties consist of the heat capacity (Cv)/ Jmol-1K-1 entropy(S)/ Jmol-1K-1 and thermal energy(Eth)/ kJmol-1 were obtained from quantum-chemistry technique at the Hartree-Fock (HF) level using the ab initio 6-31G* basis sets. Results: The Genetic Algorithm (GA) method was used to select important molecular descriptors and then they were used as inputs for SPSS software package. The predictive powers of the MLR models were discussed using Leave-One-Out (LOO) cross-validation, leave-group (5-fold)-out (LGO) and external prediction series. The statistical parameters of the training and test sets for GA–MLR models were calculated. Conclusion: The resulting quantitative GA-MLR models of Cv, S, and Eth were obtained:[r2=0.950, Q2=0.989, r2 ext=0.969, MAE(overall,5-flod)=0.6825 Jmol-1K-1], [r2=0.980, Q2=0.947, r2 ext=0.943, MAE(overall,5-flod)=0.5891Jmol-1K-1], and [r2=0.980, Q2=0.809, r2 ext=0.985, MAE(overall,5-flod)=2.0284 kJmol-1]. The results showed that the predictive ability of the models was satisfactory, and the constitutional, topological indices and ring descriptor could be used to predict the mentioned properties of 103 cycloalkanes.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Reference34 articles.

1. Vollhardt K.; Peter C.; Neil E.; schore organic chemistry 2007

2. McMurry J.E.; Eric E.; Simanek K.; Fundamentals of organic chemistry 2006

3. Devillers J.; Balaban A.T.; Topological Indices and Related Descriptors in QSAR and QSPR 1999

4. Diudea M.V.; QSAR/QSPR studies by Molecular Descriptors 2001

5. Hessler G.; Baringhaus K.H.; Artificial Intelligence in Drug Design. Molecules 2018,23(10),2520-2533

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3