Prediction of Oral Acute Toxicity of Organophosphates Using QSAR Methods

Author:

Kianpour Mina1ORCID,Mohammadinasab Esmat1ORCID,Isfahani Tahereh M.1ORCID

Affiliation:

1. Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

Aims: Prediction of oral acute toxicity of organophosphates using QSAR methods. Background: Prediction of oral acute toxicity of organophosphates (including some pesticides and insecticides) using GA-MLR and BPANN methods. Objective: The aim of the present study was to develop quantitative structure-activity relationship (QSAR) models, based on molecular descriptors to predict the oral acute toxicity (LD50) of organophosphate compounds. Methods: The QSAR models based on genetic algorithm-multiple linear regression (GA-MLR) and back-propagation artificial neural network (BPANN) methods were proposed. The prediction experiment showed that the BPANN method was a reliable model for screening molecular descriptors, and molecular descriptors obtained by BPANN models could well characterize the molecular structure of each compound. Results: It was indicated that among molecular descriptors to predict the LD50 of organophosphates, ALOGP2, RDF030u, RDF065p and GATS5m descriptors have more importance than the other descriptors. Also BPANN approach with the values of root mean square error (RMSE= 0.00168), square correlation coefficient (R2 = 0.9999) and absolute average deviation (AAD=0.001675045) gave the best outcome, and the model predictions were in good agreement with experimental data. Conclusion: The proposed model may be useful for predicting LD50 of new compounds of similar class.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3