In Silico Screening for Anti-inflammatory Bioactive Molecules from Ayurvedic Decoction, Balaguluchyadi kashayam

Author:

S. J. Rahitha Devi1ORCID,Kumar B. Prakash1ORCID

Affiliation:

1. Inflammation Research Lab, School of Biosciences, Mahatma Gandhi University, Priyadarshini Hills, Kottayam, Kerala 686560, India

Abstract

Background: Balaguluchyadi kashayam, a polyherbal Ayurvedic decoction prepared from Sidacordifolia L., Tinospora cordifolia (Willd.) Miers, and Cedrusdeodara (Roxb. ex D.Don) G.Don, is used in Ayurveda for the treatment of chronic inflammatory conditions. Although this herbal decoction has been used for a long period for treating chronic inflammatory conditions, the mechanism of action of the decoction in reducing inflammatory conditions associated with chronic inflammation has not been clearly understood. Mass spectroscopy-based identification of bioactive molecules present in the decoction and its interaction with enzymes/proteins involved in the pathogenesis of chronic inflammation has been carried and reported in this study. Introduction: Polyherbalism is one of the major principles of Ayurveda. Various phytoconstituents with different activities in the polyherbal decoction act on multi targets of a wide range of diseases. Balaguluchyadi kashayam is a polyherbal decoction prescribed for chronic inflammatory etiologies and the present study aims to evaluate the binding potential of the compounds, identified from Balaguluchyadi kashayam to enzymes/proteins involved in the development and progression of chronic inflammation. Methods: The bioactive compounds present in the Balaguluchyadi Kashayam fractions were extracted by preparative HPLC and identified using UPLC MS Q-TOF. The physicochemical characteristics and ADMET properties of the compounds were calculated using Mol soft, Swiss ADME and OSIRIS data warrior software. Then the binding interactions between the molecules and the proinflammatory mediators such as 5 Lipoxygenase, Cyclooxygenase 2, Tumor necrosis factoralpha convertase enzyme (TACE) and Caspase 1 were determined using molecular docking software Auto Dock 4.0 (http://autodock.scripps.edu/downloads). Results: The identified bioactive molecules in the decoction showed a good binding affinity towards the enzymes/proteins involved in the development and progression of chronic inflammation compared to the binding affinity of known inhibitors/drugs to the respective enzymes/proteins. Conclusion: The bioactive molecules identified in Balaguluchyadi Kashayam could be developed as potential therapeutic molecules against enzymes/proteins involved in the development and progression of chronic inflammation.

Funder

DBT-MSUB-IPLSARE(BUILDER) program

DST

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3