Some Flavolignans as Potent Sars-Cov-2 Inhibitors via Molecular Docking, Molecular Dynamic Simulations and ADME Analysis

Author:

Cetin Adnan1

Affiliation:

1. Department of Chemistry, Faculty of Education, Van Yuzuncu Yil University, Van, 65080, Turkey

Abstract

Background: Background: The COVID-19 pandemic emerged at the end of 2019 in China and spread rapidly all over the world. Scientists strive to find virus-specific antivirals against COVID-19 disease. This study aimed to assess bioactive some flavolignans as potential SARS-CoV-2 main protease (SARS-CoV-2 Mpro) inhibitors using molecular docking study, molecular dynamic simulations, and ADME analysis. Methods: The detailed interactions between the flavolignans and SARS-CoV-2 Mpro were determined using Autodock 4.2 software. SARS-CoV-2 Mpro was docked with selected flavolignans and the docking results were analyzed by Autodock 4.2 and Biovia Discovery Studio 4.5. The SARS-CoV-2 Mpro-flavolignans’ complexes were subjected to molecular dynamic (MD) simulations for a period of 50 ns. To measure the stability, flexibility, and average distance between the SARS-CoV-2 Mpro and flavolignans, root mean square deviations (RMSD), root mean square fluctuation (RMSF) were calculated, and the binding free energy calculations of SARS-CoV-2 Mpro-flavolignans complexes were found to using the molecular mechanics/Poisson-Boltzmann surface area (MM-PBSA) method. SwissADME web tools were used to evaluate ADME properties and pharmacokinetic parameters of the flavolignans. Results: The binding energies of the SARS-CoV-2 Mpro- flavolignans’ complexes were identified from the molecular docking of SARS-CoV-2 Mpro. Sinaiticin was found to be the highest binding affinity of -9.4 kcal/mol and formed π-lone pair and pi-alkyl interactions with the catalytic binding residues Glu166 and Cys145. Silychristin, Dehydrosilybin, Hydrocarpin, Silydianin, and 5’-metoxyhydcaprin also showed high binding affinities of -9.3, -9.2, -9.0, -8.7 and -8.6  kcal/mol, respectively. The flavolignans demonstrated strong Carbon H bond interactions with the binding site residues of the Gln192, Gly143, Leu27,Glu166, and Tyr54, and thereby can act as potent inhibitors of the SARS-CoV 2 Mpro. Conclusion: The selected flavolignans obey Lipinski’s rule of five. According to the results obtained from molecular docking studies, molecular dynamic simulations, and ADME analysis. It can be proposed that the flavolignans which can be used to design effective antiviral drug candidates against the SARS-CoV-2, can be tried for promising and effective inhibitors of the SARS-CoV-2 main protease in vitro and in vivo studies.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3