Identification of Potential Drug Therapy for Dermatofibrosarcoma Protuberans with Bioinformatics and Deep Learning Technology

Author:

Xu Yingbin1,Liu Muge1,Yang Fan1

Affiliation:

1. Department of Burn Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510030, China

Abstract

Background: Dermatofibrosarcoma protuberans (DFSP) is a rare mesenchymal tumor that is primarily treated with surgery. Targeted therapy is a promising approach to help reduce the high rate of recurrence. This study aims to identify the potential target genes and explore the candidate drugs acting on them effectively with computational methods. Methods: dentification of genes associated with DFSP was conducted using the text mining tool pubmed2ensembl. Further gene screening was carried out by conducting Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Protein-Protein Interaction (PPI) network was constructed by using the Search Tools for the Retrieval of Interacting (STRING) database and visualized in Cytoscape. The gene candidates were identified after a literature review. Drugs targeting these genes were selected from Pharmaprojects. The binding affinity scores of Drug-Target Interaction (DTI) were predicted by a deep learning algorithm Deep Purpose. Results: total of 121 genes were found to be associated with DFSP by text mining. The top 3 statistically functionally enriched pathways of GO and KEGG analysis included 36 genes, and 18 hub genes were further screened out by constructing a PPI networking and literature retrieval. A total of 42 candidate drugs targeted at hub genes were found by Pharmaprojects under our restrictions. Finally, 10 drugs with top affinity scores were predicted by DeepPurpose, including 3 platelet-derived growth factor receptor beta kinase (PDGFRB) inhibitors, 2 platelet-derived growth factor receptor alpha kinase (PDGFRA) inhibitors, 2 Erb-B2 receptor tyrosine kinase 2 (ErbB-2) inhibitors, 1 tumor protein p53 (TP53) stimulant, 1 vascular endothelial growth factor receptor (VEGFR) antagonist, and 1 prostaglandin-endoperoxide synthase 2 (PTGS2) inhibitor. Conclusion: Text mining and bioinformatics are useful methods for gene identification in drug discovery. DeepPurpose

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3