Molecular Insights on Bioactive Compounds against Covid-19: A Network Pharmacological and Computational Study

Author:

Thangavel Saraswathi Nambiappan1ORCID,Jeevanandam Jayanth1ORCID,Paramasivam Esackimuthu1ORCID,Palanisamy Anbumathi2ORCID,Raghavendran Srikanth3ORCID

Affiliation:

1. Molecular Biophysics Lab, School of Chemical and Biotechnology, SASTRA Deemed to- be University, Thanjavur- 613401, Tamil Nadu, India

2. Department of Biotechnology, NIT Warangal, Telangana 506004, India

3. TATA-Realty Data Science Lab, School of Humanity and Science, SASTRA Deemed to-be University, Thanjavur-613401, Tamil Nadu, India

Abstract

Background: Network pharmacology based identification of phytochemicals in the form of cocktails against off-targets can play a significant role in the inhibition of SARS_CoV2 viral entry and its propagation. This study includes network pharmacology, virtual screening, docking and molecular dynamics to investigate the distinct antiviral mechanisms of effective phytochemicals against SARS_CoV2. Methods: SARS_CoV2 human-protein interaction network was explored from the BioGRID database and analysed using Cytoscape. Further analysis was performed to explore biological function, proteinphytochemical/ drugs network and up-down regulation of pathological host target proteins. This led to understand the antiviral mechanism of phytochemicals against SARS_CoV2. The network was explored through g: Profiler, EnrichR, CTD, SwissTarget, STITCH, DrugBank, BindingDB, STRING and SuperPred. Virtual screening of phytochemicals against potential antiviral targets such as M-Pro, NSP1, Receptor binding domain, RNA binding domain, and ACE2 discloses the effective interaction between them. Further, the binding energy calculations through simulation of the docked complex explain the efficiency and stability of the interactions. Results: The network analysis identified quercetin, genistein, luteolin, eugenol, berberine, isorhamnetin and cinnamaldehyde to be interacting with host proteins ACE2, DPP4, COMT, TUBGCP3, CENPF, BRD2 and HMOX1 which are involved in antiviral mechanisms such as viral entry, viral replication, host immune response, and antioxidant activity, thus indicating that herbal cocktails can effectively tackle the viral hijacking of the crucial biological functions of a human host. Further exploration through virtual screening, docking and molecular dynamics recognizes the effective interaction of phytochemicals such as punicalagin, scutellarin, and solamargine with their respective potential targets. Conclusion: This work illustrates a probable strategy for the identification of phytochemical-based cocktails and off-targets which are effective against SARS_CoV 2.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3