In silico Binding Profile Analysis and In vitro Investigation on Chitin Synthase Substrate and Inhibitors from Maize Stem Borer, Chilo partellus

Author:

Ranganathan Sampathkumar1,Ampasala Dinakara Rao1,Palaka Bhagath Kumar1,Ilavarasi Anbumani Velmurugan1,Patidar Ishwar1,Poovadan Lakshmi Priya1,Sapam Tuleshwori Devi1

Affiliation:

1. Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry 605014, India

Abstract

Introduction: Insect growth and metamorphosis are strictly dependent on the structural changes that occur in chitin containing tissues and organs. Chitin synthase catalyzes chitin polymerization by β-(1, 4) glycosidic linkage of Nacetyl-D-glucosamine (GlcNAc) monomers; the major component of insect cuticles. Targeting this enzyme could be a promising strategy to control insect pests while avoiding adverse effects on coexisting populations. Nikkomycin Z and polyoxins are commercially available fungal inhibitors known to bind to the nucleotide-binding sites of insects and fungal chitin synthase. But the binding mode of chitin synthase has not been explored to date as its structure is not available yet. Methods: To understand the structural features of the Chilo partellus chitin synthase enzyme (CpCHS), the threedimensional (3D) structure of the CpCHS catalytic domain was modeled using ROBETTA webserver. The obtained model was used to investigate the binding mode of its substrate, uridine diphosphate-N-acetyl-D-glucosamine (UDPGlcNAc), and inhibitors (nikkomycin Z and polyoxins) by molecular docking approach using Schrödinger Suite-Maestro v9.2. The docked complexes were further investigated for their interaction stability by performing molecular dynamics (MD) simulations using GROMACS v5.1.2. Results: Our study highlighted the significance of various interactions made by CHS residues present in the Walker-B loop and donor-binding motifs with the substrate (UDP-GlcNAc), and GEDR motif with an acceptor (GlcNAc). Also, the interactions of the QRRRW motif while forming chitin polymer were explored. We observed that the inhibitors exhibited good binding affinity with these motifs, indicated by their docking and binding affinity scores. Conclusion: In vitro analysis suggested that nikkomycin Z showed higher inhibition of chitin synthase activity at a concentration of 2.5 µg.L-1 . Our study provided insights into the crucial interactions of chitin synthase while designing inhibitors against insect pests.

Funder

University Grant Commission

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3