DFT-Based QSAR Modelling of Inhibitory Activity of Coumarins and Sulfocoumarins on Carbonic Anhydrase (CA) Isoforms (CA I and CA II)

Author:

Eroglu Erol1

Affiliation:

1. Department of Mathematics and Sciences Education, Faculty of Education, Akdeniz University, Dumlupınar Bulvarı, Kampus 07058, Antalya, Turkey

Abstract

<P>Objective: We present three robust, validated and statistically significant quantitative structure-activity relationship (QSAR) models, which deal with the calculated molecular descriptors and experimental inhibition constant (Ki) of 42 coumarin and sulfocoumarin derivatives measured against CA I and II isoforms. </P><P> Methods: The compounds were subjected to DFT calculations in order to obtain quantum chemical molecular descriptors. Multiple linear regression algorithms were applied to construct QSAR models. Separation of the compounds into training and test sets was accomplished using Kennard-Stone algorithm. Leverage approach was applied to determine Applicability Domain (AD) of the obtained models. </P><P> Results: Three models were developed. The first model, CAI_model1 comprises 30/11 training/test compounds with the statistical parameters of R2=0.85, Q2=0.77, F=27.57, R2 (test) =0.72. The second one, CAII_model2 comprises 30/12 training/test compounds with the statistical parameters of R2=0.86, Q2=0.78, F=30.27, R2 (test) =0.85. The final model, &#916;pKi_model3 consists of 25/3 training/ test compounds with the statistical parameters of R2=0.78, Q2=0.62, F=13.80 and R2(test) =0.99. </P><P> Conclusion: Interpretation of reactivity-related descriptors such as HOMO-1 and LUMO energies and visual inspection of their maps of orbital electron density leads to a conclusion that the binding free energy of the entire binding process may be modulated by the kinetics of the hydrolyzing step of coumarins.</P>

Funder

Scientific and Technological Research Council of Turkey

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3