Molecular Docking Studies of Glycyrrhetinic Acid Derivatives as Anti-Colorectal Cancer Agents

Author:

Doan Nam Q.H.1,Truong Tuyen N.2,Nguyen Phuong T.V.2ORCID

Affiliation:

1. Faculty of Medicine and Pharmacy, Van Lang University, Ho Chi Minh City, Vietnam

2. Faculty of Pharmacy, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam

Abstract

Background: In this study, the anti-colorectal cancer (CRC) activities of 40 glycyrrhetinic acid derivatives were proposed and evaluated by the molecular docking method, which allowed the flexibility of both ligand-receptor, with twelve CRC-related targets. Methods: The proposed derivatives, which clearly distinguish isomers at position 18 as well as the different tautomers, were divided into five groups, including (1) glycyrrhetinic acid and its oxidation derivatives, (2) glycoside derivatives, (3) 3β-amine derivatives, (4) five-membered heterocyclic ring-combined derivatives, and (5) six-membered heterocyclic ring-combined derivatives. Results: Finally, four out of twelve proposed targets related to CRC with good binding affinities to the proposed glycyrrhetinic acid derivatives were selected, including Epidermal Growth Factor Receptor (EGFR), Focal Adhesion Kinase (FAK), Lactate Dehydrogenase A (LDHA), and Thymidylate Synthase (TS). Conclusion: From there, 9/40 derivatives for EGFR (pKd ≥ 9); 10/40 derivatives for FAK (pKd ≥ 10); 9/40 derivatives for LDHA (pKd ≥ 10), and 6/40 derivatives for TS (pKd ≥ 9) were also obtained. The glycoside derivatives showed the best binding affinity (especially the glucuronide derivative 5b), followed by the 3β-amino derivatives (especially the 3β-(phenylamino) derivative 8b) and the five-membered heterocyclic ring-combined derivatives (especially the pyrrole derivative 10a or pyrazole derivative 11.2a), while the six-membered heterocyclic ring-combined derivatives had less potential to inhibit the 4 selected targets.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3