A Comparative Study of 1D Descriptors Supported CoMFA and CoMSIA QSAR Models to Gain Novel Insights into 1,2,4-Triazoles Acting As Antitubercular Agents

Author:

Ray Rajdeep1ORCID,Shenoy Gautham G.1ORCID,Kumar T.N.V. Ganesh1ORCID

Affiliation:

1. Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India

Abstract

Background: Tuberculosis is one of the leading causes of deaths due to infectious disease worldwide. There is an urgent need for developing new drugs due to the rising incidents of drug resistance. Previously, triazole molecules showing antitubercular activity, were reported. Various computational tools pave the way for a rational approach to understanding the structural importance of these compounds in inhibiting the growth of Mycobacterium Tuberculosis. Objective: The aim of this study is to develop and compare two different QSAR models based on a set of previously reported triazole molecules and use the best one for gaining structural insights into those molecules. Methods: In this current study, two separate models were made with CoMFA and CoMSIA descriptors based on a dataset of triazole molecules showing antitubercular activity. Several one dimensional (1D) descriptors were added to each of the models and the validation results and contour data generated from them were compared. The best model was analysed to give a detailed understanding of the triazole molecules and their role in the antitubercular activity. Results: The r2, q2, predicted r2 and SEP (Standard error of prediction) for the CoMFA model were 0.866, 0.573, 0.119 and 0.736 respectively and for the CoMSIA model, the r2, q2, predicted r2 and SEP were calculated to be 0.998, 0.634, 0.013 and 0.869 respectively. Although both the QSAR models produced acceptable internal and external validation scores, but the CoMSIA results were significantly better. The CoMSIA contours also provided a better match than CoMFA with most of the features of the active compound 30b. Hence, the CoMSIA model was chosen and its contours were explored for gaining structural insights into the triazole molecules. Conclusion: The CoMSIA contours helped us understand the role of several atoms and groups of the triazole molecules in their biological activity. The possibilities for substitution in the triazole compounds that would enhance the activity were also analyzed. Thus, this study paves the way for designing new antitubercular drugs in future.

Funder

AICTE

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3