Computer Assisted Models for Blood Brain Barrier Permeation of 1, 5-Benzodiazepines

Author:

Dhavale Rakesh P.1ORCID,Choudhari Prafulla B.2ORCID,Bhatia Manish S.2ORCID

Affiliation:

1. Department of Pharmaceutics, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India

2. Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India

Abstract

Aim: To generate and validate predictive models for blood-brain permeation (BBB) of CNS molecules using the QSPR approach. Background: Prediction of molecules crossing BBB remain a challenge in drug delivery. Predictive models are designed for evaluation of set of preclinical drugs which may serve as alternatives for determining BBB permeation by experimentation. Objective: The objective of the present study was to generate QSPR models for the permeation of CNS molecules across BBB and its validation using existing in-house leads. Methods: The present study envisaged the determination of the set of molecular descriptors which are considered significant correlative factors for BBB permeation property. Quantitative Structure- Property Relationship (QSPR) approach was followed to describe the correlation between identified descriptors for 45 molecules and highest, moderate and least BBB permeation data. The molecular descriptors were selected based on drug-likeness, hydrophilicity, hydrophobicity, polar surface area, etc. of molecules that served the highest correlation with BBB permeation. The experimental data in terms of log BB were collected from available literature, subjected to 2D-QSPR model generation using a regression analysis method like Multiple Linear Regression (MLR). Result: The best QSPR model was Model 3, which exhibited regression coefficient as R2= 0.89, F = 36; Q2= 0.7805 and properties such as polar surface area, hydrophobic hydrophilic distance, electronegativity, etc., which were considered key parameters in the determination of the BBB permeability. The developed QSPR models were validated with in-house 1,5-benzodiazepines molecules and correlation studies were conducted between experimental and predicted BBB permeability. Conclusion: The QSPR model 3showed predictive results in good agreements with experimental results for blood brain permeation. Thus, this model was found to be satisfactory in achieving goodcorrelation between selected descriptors and BBB permeation for benzodiazepines and tricyclic compounds.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3