In Silico Design of Fusion Toxin DT389GCSF and a Comparative Study

Author:

Siahmazgi Maryam G.1,Khalili Mohammad A.N.1,Ahmadpour Fathollah2,Khodadadi Sirus1,Zeinoddini Mehdi1

Affiliation:

1. Malek Ashtar University of Technology, Tehran, Iran

2. Trauma Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran

Abstract

Background: Chemotherapy and radiotherapy have negative effects on normal tissues and they are very expensive and lengthy treatments. These disadvantages have recently attracted researchers to the new methods that specifically affect cancerous tissues and have lower damage to normal tissues. One of these methods is the use of intelligent recombinant fusion toxin. The fusion toxin DTGCSF, which consists of linked Diphtheria Toxin (DT) and Granulocyte Colony Stimulate Factor (GCSF), was first studied by Chadwick et al. in 1993 where HATPL linker provided the linking sequence between GCSF and the 486 amino acid sequences of DT. Methods: In this study, the fusion toxin DT389GCSF is evaluated for functional structure in silico. With the idea of the commercial fusion toxin of Ontak, the DT in this fusion protein is designed incomplete for 389 amino acids and is linked to the beginning of the GCSF cytokine via the SG4SM linker (DT389GCSF). The affinity of the DT389GCSF as a ligand with GCSF-R as receptor was compared with DT486GCSF as a ligand with GCSF-R as receptor. Both DT486GCSF and its receptor GCSF-R have been modeled by Easy Modeler2 software. Our fusion protein (DT389GCSF) and GCSF-R are modeled through Modeller software; all of the structures were confirmed by server MDWEB and VMD software. Then, the interaction studies between two proteins are done using protein-protein docking (HADDOCK 2.2 web server) for both the fusion protein in this study and DT486GCSF. Results: The HADDOCK results demonstrate that the interaction of DT389GCSF with GCSF-R is very different and has a more powerful interaction than DT486GCSF with GCSF-R. Conclusion: HADDOCK web server is operative tools for evaluation of protein–protein interactions, therefore, in silico study of DT389GCSF will help with studying the function and the structure of these molecules. Moreover, DT389GCSF may have important new therapeutic applications.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3