3D-QSAR and Molecular Docking Studies on Oxadiazole Substituted Benzimidazole Derivatives: Validation of Experimental Inhibitory Potencies Towards COX-2

Author:

Asati Vivek1,Ghode Piyush1,Bajaj Shalini1,Jain Sanmati K.1,Bharti Sanjay K.1

Affiliation:

1. Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, 495009, Chhattisgarh, India

Abstract

Background: In past few decades, computational chemistry has seen significant advancements in design and development of novel therapeutics. Benzimidazole derivatives showed promising anti-inflammatory activity through the inhibition of COX-2 enzyme. Objective: The structural features necessary for COX-2 inhibitory activity for a series of oxadiazole substituted benzimidazoles were explored through 3D-QSAR, combinatorial library generation (Combi Lab) and molecular docking. Methods: 3D-QSAR (using kNN-MFA (SW-FB) and PLSR (GA) methods) and Combi Lab studies were performed by using VLife MDS Molecular Design Suite. The molecular docking study was performed by using AutoDockVina. Results: Significant QSAR models generated by PLSR exhibited r2 = 0.79, q2 = 0.68 and pred_r2 = 0. 84 values whereas kNN showed q2 = 0.71 and pred_r2 = 0.84. External validation of developed models by various parameters assures their reliability and predictive efficacy. A library of 72 compounds was generated by combinatorial technique in which 11 compounds (A1-A5 and B1-B6) showed better predicted biological activity than the most active compound 27 (pIC50 = 7.22) from the dataset. These compounds showed proximal interaction with amino acid residues like TYR355 and/or ARG120 on COX-2(PDB ID: 4RS0). Conclusion: The present work resulted in the design of more potent benzimidazoles as COX-2 inhibitors with good interaction as compared to reference ligand. The results of the study may be helpful in the development of novel COX-2 inhibitors for inflammatory disorders.

Publisher

Bentham Science Publishers Ltd.

Subject

Drug Discovery,Molecular Medicine,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3