Detection of a Diagnostic Model and Comprehensive Examination of Diabetic Retinopathy Utilizing Genes Linked to Endoplasmic Reticulum Stress

Author:

Zhang Yan1,Huang Yihong1,Guo Maosheng1,Chen Wanzhu1,Wu Yuyu1

Affiliation:

1. Department of Ophthalmology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China

Abstract

Objectives: The aim of this study was to reveal the biological functionalities associated with endoplasmic reticulum stress (ERS)-related genes (ERSGs) in the context of diabetic retinopathy (DR). Methods: Differentially expressed genes (DEGs) within the DR group and the Control group were identified and then integrated with ERSGs. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) methodologies were used to investigate potential biological mechanisms. A diagnostic model for ERS and a nomogram were formulated based on biomarkers selected through the Least Absolute Shrinkage and Selection Operator method. The diagnostic efficacy of this model was thoroughly evaluated. ERS-associated subtypes were identified, and the Single-Sample GSEA (ssGSEA) and CIBERSORT algorithms were used to assess immune infiltration. Results:: We identified 10 ERS-related DEGs (ERSRDEGs) within the DR Group. Subsequently, a diagnostic model was constructed based on 5 ERS genes, namely CCND1, IGFBP2, TLR4, TXNIP, and VIM. The validation analysis demonstrated the commendable diagnostic performance of the model. Analysis of the ssGSEA immune characteristics revealed a positive correlation in the DR group between myeloid-derived suppressor cells (MDSC), regulatory T cells (Tregs), and CCND1 TXNIP. Furthermore, a significant negative correlation was observed between central memory CD4 T cells and CCND1. In the context of CIBERSORT, the results indicated a positive correlation between macrophages and IGFBP2, as well as Tregs and IGFBP2 in the DR group. Notably, a conspicuous negative correlation was identified between resting mast cells and IGFBP2. Conclusion: The present study provides novel diagnostic biomarkers for DR from an ERS perspective.

Publisher

Bentham Science Publishers Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3