Influence of Ultrafine Particles Exposure on Asthma Exacerbation in Children: A Meta-Analysis

Author:

Li Qinyuan1,Yi Qian1,Tang Lin1,Luo Siying1,Tang Yuan1,Zhang Guangli2,Luo Zhengxiu2

Affiliation:

1. Key Laboratory of Pediatrics in Chongqing, Chongqing 401122, China

2. Department of Respiratory Medicine, Children's Hospital of Chongqing Medical University, Chongqing 401122, China

Abstract

Background: Air pollution is a major cause of asthma exacerbation. Most studies have shown that exposure to coarse and fine particulate matter is associated with asthma exacerbation. Ultrafine particles (UFPs, aerodynamic diameter ≤ 0.1 µm) are the smallest airborne particles, which are capable of penetrating deep into the lungs. Toxicological studies have suggested that exposure to UFPs may have serious effects on respiratory health. However, epidemiological evidence on the effects of UFPs exposure on asthma exacerbation in children remains unclear. Objective: We conducted a meta-analysis to quantitatively assess the effects of exposure to UFPs on childhood asthma exacerbation. Methods: We searched four databases for epidemiological studies published until March 20, 2018. Pooled Odds Ratios (OR) and 95% confidence intervals (95% CIs) per 10000 particles/cm3 were estimated using fixed-effect models. Subgroup analyses, sensitivity analyses, and Begg’s and Egger’s regression were also performed. Results: Eight moderate–high quality studies with 51542 events in total satisfied the inclusion criteria. Exposure to UFPs showed a positive association with childhood asthma exacerbation [OR (95% CI): 1.070 (1.037, 1.104)], increased asthma-associated emergency department visits [OR (95% CI): 1.111 (1.055, 1.170)], and asthma-associated hospital admissions [OR (95% CI): 1.045 (1.004, 1.088)] and had a stronger association with childhood asthma exacerbation at long lags [OR (95% CI):1.060 (1.039, 1.082)]. A low heterogeneity and no publication bias were detected. Conclusion: Exposure to UFPs may increase the risk of asthma exacerbation and may be strongly associated with childhood asthma exacerbation at long lags.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3