Prediction of Ion Channels and their Types from Protein Sequences: Comprehensive Review and Comparative Assessment

Author:

Gao Jianzhao1,Miao Zhen2,Zhang Zhaopeng1,Wei Hong1,Kurgan Lukasz3

Affiliation:

1. School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China

2. College of Life Sciences, Nankai University, Tianjin, China

3. Department of Computer Science, Virginia Commonwealth University, Richmond, United States

Abstract

Background: Ion channels are a large and growing protein family. Many of them are associated with diseases, and consequently, they are targets for over 700 drugs. Discovery of new ion channels is facilitated with computational methods that predict ion channels and their types from protein sequences. However, these methods were never comprehensively compared and evaluated. </P><P> Objective: We offer first-of-its-kind comprehensive survey of the sequence-based predictors of ion channels. We describe eight predictors that include five methods that predict ion channels, their types, and four classes of the voltage-gated channels. We also develop and use a new benchmark dataset to perform comparative empirical analysis of the three currently available predictors. </P><P> Results: While several methods that rely on different designs were published, only a few of them are currently available and offer a broad scope of predictions. Support and availability after publication should be required when new methods are considered for publication. Empirical analysis shows strong performance for the prediction of ion channels and modest performance for the prediction of ion channel types and voltage-gated channel classes. We identify a substantial weakness of current methods that cannot accurately predict ion channels that are categorized into multiple classes/types. </P><P> Conclusion: Several predictors of ion channels are available to the end users. They offer practical levels of predictive quality. Methods that rely on a larger and more diverse set of predictive inputs (such as PSIONplus) are more accurate. New tools that address multi-label prediction of ion channels should be developed.

Funder

NSFC

Natural Science Foundation of Tianjin City

National Natural Science Foundation of China

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3