GSK-3 Inhibitors as New Leads to Treat Type-II Diabetes

Author:

Srivani Gowru1ORCID,Sharvirala Ramyakrishna2,Veerareddy Prabhakar Reddy3ORCID,Pal Dilipkumar4,Kiran Gangarapu5ORCID

Affiliation:

1. Department of Bioscience and Biotechnology, Banasthali University, Vanasthali, Rajasthan- 304022, India

2. University College of Technology, Osmania University, Hyderabad-5000 07, Telangana, India

3. Department of Pharmaceutics, University College of Pharmaceutical Sciences, Palamuru University, Mahabubnagar-509001, Telangana, India

4. Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, (A Central University), Koni, Bilaspur, C.G., India

5. School of Pharmacy, Anurag Group of Institutions, Hyderabad-500 088, Telangana, India

Abstract

In India as well as globally, diabetes is in a state of high risk and next to cardiovascular disease. As per the WHO, the risk of diabetes is expected to rise about 511 million by 2030. In quest of novel targets for type-2 diabetes, many targets were elucidated, such as Glycogen Synthase Kinase-3 (GSK-3), Dipeptidyl Peptidase (DPP-IV), PPAR-γ, α-Glucosidase, α-Amylase, GLP-1, and SGLT. Among the targets, GSK-3 was reported to be an effective target for the treatment of diabetes. In the metabolism of glycogen, GSK is a regulatory enzyme for the biosynthesis of glycogen (glycogenesis). It catalyzes the synthesis of a linear unbranched molecule with 1,4-α-glycosidic linkages. GSK-3 family has two isoenzymes, namely α and β, which differ in their Nand C- terminal sequences and are semi-conservative multifunctional serine/threonine kinase enzymes. In this chapter, we discuss an overview of general diabetic mechanisms and how GSK-3 modulation may influence these processes. Mutation in the GSK-3 complex causes diabetes. Synthetic and natural scaffolds modulate GSK-3 against diabetes and leading to its optimization for the development of GSK-3 inhibitors. This review mainly focuses on the development of GSK-3 inhibitors and highlights current and potential future therapeutic approaches that support the notion of targeting glucose metabolism with novel antidiabetic agents.

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Medicine

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3