Novel Treatment for the Most Resistant Schizophrenia: Dual Activation of NMDA Receptor and Antioxidant

Author:

Lin Chieh-Hsin1,Chen Yu-Ming1,Lane Hsien-Yuan2

Affiliation:

1. Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan

2. Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan

Abstract

: Clozapine has been regarded as the last-line antipsychotic agent for patients with refractory schizophrenia. However, many patients remain unresponsive to clozapine, referred to as “clozapineresistant”, “ultra-treatment-resistant”, or remain in incurable state. There has been no convincing evidence for augmentation on clozapine so far. Novel treatments including numerous N-methyl-Daspartate (NMDA) receptor (NMDAR) enhancers, such as glycine, D-serine, D-cycloserine, and Nmethylglycine (sarcosine) failed in clinical trials. : Earlier, the inhibition of D-amino acid oxidase (DAAO) that may metabolize D-amino acids and activate NMDAR has been reported to be beneficial for patients with schizophrenia receiving antipsychotics except for clozapine. A recent randomized, double-blind, placebo-controlled clinical trial found that add-on sodium benzoate, a DAAO inhibitor, improved the clinical symptoms in patients with clozapine- resistant schizophrenia, possibly through DAAO inhibition (and thereby NMDAR activation) and antioxidation as well; additionally, sodium benzoate showed no obvious side effects, indicating that the treatment is safe at doses up to 2 g per day for 6 weeks. More studies are warranted to elucidate the mechanisms of sodium benzoate for the treatment of schizophrenia and the etiology of this severe brain disease. If the finding can be reconfirmed, this approach may bring new hope for the treatment of the most refractory schizophrenia. : This review summarizes the current status of clinical trials and related mechanisms for treatmentresistant, especially, clozapine-resistant schizophrenia. The importance of understanding the molecular circuit switches is also highlighted which can restore brain function in patients with schizophrenia. Future directions in developing better treatments for the most difficult to cure schizophrenia are also discussed.

Funder

Ministry of Science and Technology, Taiwan

National Health Research Institutes

China Medical University Hospital, Taiwan

Taiwan Ministry of Health and Welfare Clinical Trial and Research Center of Excellence

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3