Role of Adenosine Kinase Inhibitor in Adenosine Augmentation Therapy for Epilepsy: A Potential Novel Drug for Epilepsy

Author:

Wang Xiongfei1,Li Tianfu1

Affiliation:

1. Beijing Key Laboratory of Epilepsy, Beijing, China

Abstract

Epilepsy, an ancient disease, is defined as an enduring predisposition to generate epileptic seizures and by the neurobiological, cognitive, psychological, and social consequences of this condition. Antiepileptic drugs (AEDs) are currently used as first-line treatment for patients with epilepsy; however, around 36% of patients are diagnosed with refractory epilepsy, which means two or more AEDs have been considered as failed after sufficiently correct usage. Unfortunately, it is unlikely that the improvement of the efficacy of AEDs will be easily achieved, especially since no AEDs show efficacy in ceasing epileptogenesis. Consequently, several endogenous anticonvulsants attract investigators and epileptologists, such as galanin, cannabis, and adenosine. Astrogliosis is a neuropathological hallmark of epilepsy, whatever the etiology is, and astrogliosis is frequently associated with overexpression of adenosine kinase, which means downregulation of synaptic levels of adenosine. Consequently, adenosine is negatively regulated by adenosine kinase through the astrocyte-based cycle. On the other hand, focal adenosine augmentation therapy, using adenosine kinase inhibitor, has been proved to be effective for reducing seizures in both animal models and in vitro human brain tissue resected from a variety of etiology of refractory epilepsy patients. In addition to reducing seizures, adenosine augmentation therapy can also palliate co-morbidities, like sleep, cognition, or depression. Of importance, transgenic mice with reduced ADK were resistant to epileptogenesis induced by acute brain injury. In terms of translation, based on findings of adenosinerelated epileptogenic mechanisms, the application into clinical practice seems to be feasible by molecular strategies that have been already experimentally implemented, including gene and RNA interference. In the present review, we will focus on the evidence of ADK dysfunction in the epileptic brain from human beings and animals, and review the role of ADK inhibitor in adenosine augmentation therapy and the underlying mechanism of prevention of epileptogenesis.

Funder

National Natural Science Foundation of China

Beijing Institute For Brain Disorders

Beijing Postdoctoral Research Foundation

Publisher

Bentham Science Publishers Ltd.

Subject

Clinical Biochemistry,Drug Discovery,Pharmacology,Molecular Medicine

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3