Q-TOF LC/MS-based Untargeted Metabolomics Approach to Evaluate the Effect of Folate-Conjugated Cyclodextrins on Triple-Negative Breast Cancer Cells

Author:

Varol Işıl1,Kaplan Ozan2,Erdoğar Nazlı3,Öncül Selin4,Nielsen Thorbjorn Terndrup5,Ercan Ayşe4,Bilensoy Erem3,Çelebier Mustafa2

Affiliation:

1. Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, 06532, Ankara, Turkey

2. Department of Analytical Chemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey

3. Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey

4. Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, 06100, Ankara, Turkey

5. Department of Chemistry and Bioscience, Section of Chemistry, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark

Abstract

Background: Breast cancer is a heterogenic disease that comprises of various morphologies with intrinsic subtypes and is principally responsible for casualties among female cancer patients. Triple-negative breast cancer (TNBC) is the most aggressive subtype with a high probability of relapsing, hence successful treatment can be quite challenging. The pathogenesis of TNBC remains ambiguous and the identification of dependable biomarkers for its early diagnosis is crucial to design a strategy for therapeutic armamentarium. Objective: To clarify the folate-dependent mechanism of action causing cell death and to unravel the potential biomarkers of TNBC to defeat this consequential public health burden. Methods: The MTT assay and the morphological examination via microscopy were carried out to examine the viability of the cells upon the administration of the blank folate-conjugated cyclodextrin nanoparticles. An untargeted metabolomic approach using Q-TOF LC/MS was performed. Multivariate analysis of the metabolomic profile was applied to the MDA-MB-231 cell line with the aim of comparing the untreated cells with the folate-conjugated cyclodextrin nanoparticles applied cells to detect possible biomarkers. Results: The spectrophotometric and microscopic analyses revealed that MDA-MB-231 cells underwent early apoptosis following the incubation with the folate-conjugated nanoparticles for 24 h of administration. Moreover, metabolomics profiling pointed out that hexose metabolism was significantly altered. Data mining procedures showed that glycolysis, mannose, fructose, and galactose were the most affected pathways in TNBC upon blank folate-conjugated cyclodextrin nanoparticle administration and this effect was determined to be cell-specific. A perturbed hexose pathway may be the explanation of selective cell death and decelerated cell growth seen in TNBC cells. Conclusions: Our study offers a new understanding of the underlying mechanisms of TNBC since we hereby provide evidence that hexose is one of the main driving forces for the metabolic mechanism over TNBC cells. This alternative mechanistic approach may markedly increase the effect of chemotherapy on TNBC.

Funder

Scientific And Technological Research Council Of Turkey - Tubitak

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Molecular Medicine,Biochemistry,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3