Calcium/Copper Alginate Framework Doped with CuO Nanoparticles as a Novel Adsorbent for Micro-extraction of Benzodiazepines from Human Serum

Author:

Rahbar Nadereh1ORCID,Ahmadi Fatemeh2,Ramezani Zahra3,Nourani Masoumeh2

Affiliation:

1. Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

2. Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3. Marine Pharmaceutical Science Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Background: Sample preparation is one of the most challenging phases in pharmaceutical analysis, especially in biological matrices, affecting the whole analytical methodology. Objective: In this study, a new Ca(II)/Cu(II)/alginate/CuO Nanoparticles Hydrogel Fiber (CCACHF) was synthesized through a simple, green procedure and applied for fiber micro solid-phase extraction (FMSPE) of diazepam (DIZ) and oxazepam (OXZ) as model drugs prior to high-performance liquid chromatography-UV detection (HPLC-UV). Methods: Composition and morphology of the prepared fiber were characterized and the effect of main parameters on the fiber fabrication and extraction efficiency have been studied and optimized. Results: In optimal conditions, calibration curves were linear, ranging between 0.1–500 μg L−1 with regression coefficients of 0.9938 and 0.9968. Limit of Detection (LOD) (S/N=3) and Limit of Quantification (LOQ) (S/N=10) of the technique for DIZ and OXZ were 0.03 to 0.1 μg L−1. Within-day and between-day Relative Standard Deviations (RSDs) for DIZ and OXZ were 6.0–12.5% and 3.3–9.4%, respectively. Conclusion: The fabricated adsorbent has been substantially employed to the extraction of selected benzo-diazepines (BZDs) from human serum real specimens and the obtained recoveries were also satisfactory (82.1-109.7%).

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Molecular Medicine,Biochemistry,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3