An Integrated Strategy for Rapid Screening of Multi-target Lead Compounds for the Treatment of Alzheimer's Disease from Traditional Chinese Medicines by UHPLC Combined with High-throughput Screening: A Case Study on Salviae miltiorrhizae Radix et Rhizoma

Author:

Zhang Minmin1,Zhou Siduo2,Liu Wei1,Yan Huijiao3,Wang Xiao1,Zhao Heng-qiang1

Affiliation:

1. School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P.R. China | Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P.R. China

2. Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P.R. China

3. Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, P.R. China

Abstract

Background: Salviae Miltiorrhizae Radix et Rhizoma (Red Sage root) is widely used in traditional Chinese medicine (TCM) for the treatment of Alzheimer’s disease (AD) with demonstrated curative effects, based on the concept of "one drug with multiple therapeutic targets," which appears to be a good strategy for AD treatment. Objective: This study aimed to develop of high-throughput screening (HTS) method for multitherapeutic target components found in complex TCMs, which are active against AD, using Red Sage root as the case study. Method: Acetylcholinesterase (AChE) inhibitors (AChEIs) from Red Sage root extracts were pre-screened by ultrafiltration-HPLC (UF-HPLC) analysis, in which AChE was added to the extract and then ultrafiltered to remove non-binding compounds. Potential AChEIs were identified by HPLC analysis of compounds bound to AChE. A microplate-based HTS was then used to quantify the AChE inhibitory activity and antioxidant activity of the pre-screened compounds. Results: Pre-screening found ten potential inhibitors, which were identified by ESI-TOF/MS; six of these were purified by semi-preparative HPLC: Oleoyl neocryptotanshinone (1), Dihydrotanshinone Ⅰ (2), Cryptotanshinone (3), Tanshinone Ⅰ (4), Tanshinone ⅡA (5) and Miltirone (6). All six compounds had good AChE inhibitory activity and weak DPPH scavenging capacity. Conclusion: This study provides a platform and technology support for the rapid discovery of multi-target components, potentially active against AD, from complex TCMs and with strong potential for adaptation to the discovery of treatments for other diseases.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Shandong Province

China Agriculture Research System

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Molecular Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3