Validation of RP-HPLC Method for Determination of Omeprazole in Dissolution Media and Application to Study in-vitro Release from Solid- SNEDDS

Author:

Al-Nimry Suhair S.1,Alkhamis Khouloud A.1,Altaani Bashar M.1

Affiliation:

1. Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid,Jordan

Abstract

Background: Omeprazole has poor water solubility, is unstable in acidic solutions, and undergoes first pass metabolism which results in lowering its bioavailability. A solid Self-Nano Emulsifying Drug Delivery System (SNEDDS) was previously prepared to enhance its dissolution. Objective: Development and validation of a RP-HPLC method with UV detection for the determination of omeprazole in 0.1N HCl and in 0.01 M phosphate buffer (pH 7.4). Methods: Validation was according to the ICH Q2 (R1) guidelines in terms of linearity, accuracy and precision, lower limit of quantification, sensitivity, specificity, and robustness. The developed and validated method was used to study the in-vitro dissolution of the drug from the solid-SNEDDS, commercial products and of the unprocessed drug. The dissolution was studied in 500 ml of 0.1N HCl during the first 2 hours, and 900 mL of 0.01 M phosphate buffer (pH 7.4) during the last hour (37 ± 0.5 oC and 100 rpm). Results: The method was linear in the range 1-50 μg/ml, accurate and precise as indicated by the ANOVA test. It was specific to the drug and the pharmaceutical excipients did not affect the determination of its concentration. The method was robust to small changes in pH, composition, and flow rate of the mobile phase. The dissolution rate of omeprazole from the Solid-SNEDDS was faster than that from two commercial dosage forms and than the dissolution rate of the unprocessed drug. Conclusion: The method met the acceptance criteria and was applied successfully in studying the rate of dissolution of the drug.

Funder

deanship of scientific research at Jordan University of Science and Technology

Publisher

Bentham Science Publishers Ltd.

Subject

Pharmaceutical Science,Molecular Medicine,Biochemistry,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3