Deep Learning-Based Detection of Defects from Images

Author:

Pal Srimanta1,Das Sumita1,Manna Sayani1

Affiliation:

1. Maulana Abul Kalam Azad University of Technology, NH-12 (Old NH-34) Simhat Haringhata, Nadia 741249, West Bengal, India

Abstract

Crack detection has vital importance for monitoring and inspection of buildings. It has great significance for structural safety. This is a challenging task for computer vision and machine learning, as cracks only have low-level features for detection. Convolutional Neural Networks (CNN) is a very promising framework for crack detection from images with high accuracy and precision. This paper is based on a deep-learning methodology to detect and recognize structural defects. The dataset is split into training and testing data which is used to train the model. Then this trained model is used to recognize and classify cracks in images. The dataset consists of concrete crack images. The data set used has two categories, images with cracks and without cracks. A Convolutional Neural Network model using Pytorch will be fit to predict the images if the images have any cracks or not. This paper compares the accuracy of various models.&nbsp;<br>

Publisher

BENTHAM SCIENCE PUBLISHERS

Reference5 articles.

1. Park M.; Jin J.S.; Au S.L.; Luo S.; Cui Y.; Automated defect inspection systems by pat-tern recognition. Int J Sig Proc Image Proc Pat Recog 2009,2(2),31-42

2. Tsa D.M.; Wu S.K.; Automated surface inspection using gabor filters. Int J Adv Manuf Technol 1900,16(7),474-482

3. Tsai D.M.; Huang T.Y.; Automated surface inspection for statistical textures. Image Vis Comput 2003,21(4),307-323

4. Samarawickrama Y.C.; Wickramasinghe C.D.; Matlab based automated surface defect detection system for ceremic tiles using image processing. 6 NatConf Technol Manag 2017,34-39

5. Elbehiery H.; Hefnawy A.; Elewa M.; Surface defects detection for ceramic tiles using image processing and morphological techniques. Third World Enformatika Conference, WEC'05, 27-29, Istanbul, Turkey, 2005.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3