Exploring Quaternary Ni0.70-xCuxZn0.30Fe2O4 Ferrimagnetic Thin Films for Gas Sensing

Author:

Humbe Ashok V.1,Undre Pallavi G.2,Kounsalye Jitendra S.3,Jadhav K. M.1

Affiliation:

1. Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Chh. Sambhajinagar, MH, India

2. Department of Physics, Shikshan Maharshi Dynandeo Mohekar College, Kalamb, Dharashiv, MH, India

3. Department of Physics, Late Rajkamalji Bharti Arts, Commerce and Smt. S. R. Bharati Science College, Arni, Yavatmal, MH, India

Abstract

A nanocrystalline quaternary Ni0.70-xCuxZn0.30Fe2O4 (x = 0.00, 0.05, 0.15, and 0.25) ferrimagnetic thin film was deposited and studied utilizing advanced characterization techniques, including XRD, Raman spectroscopy, FESEM, AFM, XPS, etc. The details of the investigations made by these techniques into the structure, chemical environment, morphology, physical properties, and sensing are presented in this chapter. Spray pyrolysis was used to deposit quaternary ferrimagnetic thin films using metal nitrates as the starting material. The cubic structure was revealed by XRD patterns. The peaks in the Raman spectra correspond to the tetrahedral and octahedral sites supporting the formation of the cubic phase. The presence of permitted compositional constituents in the XPS indicates phase-pure production. FESEM images revealed some spherical agglomerations. The elemental composition was identified by the presence of Ni, Cu, Zn, Fe, and O elements in the EDS pattern. The FESEM cross section showed the deposition on the substrate, which is uniform and dense. The spherical shape, crackfree, and defect-free structure of deposited thin film system was observed by AFM. Contact angle measurements showed the thin films were hydrophilic. The sensitivity among H2S, NO2 and NH3 gases was shown by H2S gas at an operating temperature of 200 C for a composition of Ni0.65Cu0.05Zn0.30Fe2O4. The minimum detectable concentration was 20 ppm. With an increase in H2S concentration, a linear improvement in the sensing response was seen. Additionally, it was discovered that the response time shrank with an increase in H2S concentration. At 50 ppm H2S, Ni0.65Cu0.05Zn0.30Fe2O4 has shown extremely high repeatability.

Publisher

BENTHAM SCIENCE PUBLISHERS

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3